

September 1, 2006

Mr. Chuck Zimmerman Brown and Caldwell 3264 Goni Road, Suite 153 Carson City, NV 89706

Dear Mr. Zimmerman:

Enclosed is the quality assurance review of the analytical data for the analyses of the 14 air filter samples that were collected on April 11, 2006, in association with the ARCO Yerington Mine Site (Event 74). The samples were collectively analyzed for ICP metals, ICP/MS metals, and mercury.

Based on this quality assurance review, a few ICP/MS metals results and all mercury results were qualified as "not-detected" due to blank contamination. In addition, several ICP metals, ICP/MS metals, and mercury results were qualified as estimated because these positive results were reported between the method detection limit and reporting limit.

If you have any questions or comments, please do not hesitate to call.

Sincerely,

Konstadina Vlahogiani, M.S. Senior Quality Assurance Chemist III/

Project Manager

0 11:40

Concurred by:

Rock J. Vitale, CEAC, CPC Technical Director of Chemistry/

Principal

KV/RJV:hm Enc.

cc: Ms. Susie Kocsis - Brown and Caldwell

QUALITY ASSURANCE REVIEW OF THE AIR FILTER SAMPLES COLLECTED AT THE ARCO YERINGTON MINE SITE ON APRIL 11, 2006 (EVENT 74)

September 1, 2006

Prepared for:

ATLANTIC RICHFIELD COMPANY

28100 Torch Parkway Warrenville, IL 60555

Prepared by:

ENVIRONMENTAL STANDARDS, INC.

1140 Valley Forge Road P.O. Box 810 Valley Forge, PA 19482-0810

Issued to:

BROWN AND CALDWELL

3264 Goni Road, Suite 153 Carson City, NV 89706

TABLE OF CONTENTS

1.0 Introduction

- 2.0 Findings
 - A. ICP Metals Analysis
 - B. ICP/MS Metals Analysis
 - C. Mercury Analysis
- 3.0 Qualifier Summary Tables
 - A. ICP Metals Analysis
 - B. ICP/MS Metals Analysis
 - C. Mercury Analysis
- 4.0 Overall Assessment
- 5.0 Inorganic Data Qualifiers and Valid Reason Codes
- 6.0 Signatures
- 7.0 Analytical Results
- 8.0 Supporting Documentation

1.0 Introduction

This quality assurance (QA) review is based upon a rigorous examination of all data generated from the analyses of the 14 air filter samples (including quality control [QC] samples) that were collected by Brown and Caldwell on April 11, 2006, in association with the ARCO Yerington Mine Site (Event 74). The samples included in this QA review are specified on Table 1.

This review has been performed with guidance from the "National Functional Guidelines for Inorganic Data Review" (US EPA, February 1994). This document has been used to aid the data reviewer in the interpretation of the QC analysis results and in the overall evaluation of the sample data deliverables. It should be noted, however, that results affected by blank contamination will be designated with a "UJ" qualifier (not the "U" qualifier typically used when following the National Functional Guidelines) in order to be consistent with historical project validation protocols and the current project database.

The reported analytical results are presented as a summary of the data in Section 2. Data were examined to determine the usability of the analytical results and the compliance relative to the requirements specified in the published analytical methods, the Quality Assurance Project Plan (QAPjP) for the Atlantic Richfield Company Yerington Mine Site (September 2003), and the Technical Requirements For Environmental Laboratory Analytical Services BP Global Contract Lab Network (GCLN) (5/22/02, Revision 08). Qualifier codes have been placed next to results to enable the data user to quickly assess the qualitative and/or quantitative reliability of any result. This critical QA review identifies data quality issues for specific samples and specific evaluation criteria. The data qualifications allow the data's end-user to best understand the usability of the analytical results. Data not qualified in this report should be considered valid based on the QC criteria that have been reviewed. Details of this QA review are presented in Section 1 of this report. This report was prepared to provide a critical review of the laboratory analyses and reported analytical results. Rigorous QA reviews of laboratory-generated data routinely identify various problems associated with analytical measurements, even from the most experienced and capable laboratories.

TABLE 1
SAMPLES INCLUDED IN THIS QUALITY ASSURANCE REVIEW

Field Sample Identification	Laboratory Sample Identification	Report Number	Matrix	Date Sample Collected	Parameters Examined
P-0591	G6D190170-001	G6D190170	Filter	4/11/06	M ¹ , M ² , Hg
P-0592	G6D190170-002	G6D190170	Filter	4/11/06	M ¹ , M ² , Hg
P-0593	G6D190170-003	G6D190170	Filter	4/11/06	M ¹ , M ² , Hg
P-0594	G6D190170-004	G6D190170	Filter	4/11/06	M ¹ , M ² , Hg
P-0595	G6D190170-005	G6D190170	Filter	4/11/06	M ¹ , M ² , Hg
P-0596	G6D190170-006	G6D190170	Filter	4/11/06	M ¹ , M ² , Hg
P-0597 (Field Duplicate of P-0591)	G6D190170-007	G6D190170	Filter	4/11/06	M ¹ , M ² , Hg
000423	G6D190170-008	G6D190170	Filter	4/11/06	M ¹ , M ² , Hg
000424	G6D190170-009	G6D190170	Filter	4/11/06	M ¹ , M ² , Hg
000425	G6D190170-010	G6D190170	Filter	4/11/06	M ¹ , M ² , Hg
000426	G6D190170-011	G6D190170	Filter	4/11/06	M ¹ , M ² , Hg
000427	G6D190170-012	G6D190170	Filter	4/11/06	M ¹ , M ² , Hg
000428	G6D190170-013	G6D190170	Filter	4/11/06	M ¹ , M ² , Hg
000429 (Trip Blank)	G6D190170-014	G6D190170	Filter	4/11/06	M ¹ , M ² , Hg

NOTES:

Metals (specifically, silver, arsenic, barium, beryllium, cadmium, cobalt, chromium, copper, manganese, molybdenum, nickel, lead, selenium, vanadium, and zinc) by SW-846 Method 6020.

M² - Metals (specifically, aluminum, calcium, iron, magnesium, and sodium) by SW-846 Method 6010B.

Hg - Mercury by SW-846 Method 7471A.

2.0 Findings

Complete support documentation for this inorganic QA review is presented in Section 8.0 of this report. The cover sheet for this section is a checklist of all QA procedures required by the protocols and examined in this data review.

A. ICP Metals Analysis

Fourteen samples were analyzed for ICP metals (specifically, aluminum, calcium, iron, magnesium, and sodium) by SW-846 Method 6010B. The findings offered in this report for this fraction are based on the items on the following table.

		Acceptable With	Acceptable With	Not
Item Reviewed	Acceptable	Discussion	Qualification	Acceptable
Holding Times				
Sample Condition Upon Receipt				
Blank Analysis Results				
LCS Recoveries				
Detection Limits/Sensitivity				
Calibrations				
ICP Interference Check Samples				
PQL Standard Recoveries				
Field Duplicate Precision				
Post-Digestion Spike				
Serial Dilution Precision				
Analytical Sequence				
Sample Preparation				
Quantitation of Results			V	
A Critical Evaluation of	V			
Instrumental Raw Data				

<u>Quantitation of Results:</u> All positive results reported at concentrations greater than the method detection limit (MDL) but less than the reporting limit (RL) were qualified as estimated and have been flagged "J" on the data tables.

B. ICP/MS Metals Analysis

Fourteen samples were analyzed for ICP/MS metals (specifically, silver, arsenic, barium, beryllium, cadmium, cobalt, chromium, copper, manganese, molybdenum, nickel, lead, selenium, vanadium, and zinc) by SW-846 Method 6020. The findings offered in this report for this fraction are based on the items on the following table.

		Acceptable With	Acceptable With	Not
Item Reviewed	Acceptable	Discussion	Qualification	Acceptable
Holding Times	V			
Sample Condition Upon Receipt	V			
Blank Analysis Results			$\sqrt{}$	
LCS Recoveries				
Field Duplicate Precision	V			
Post-Digestion Spike				

		Acceptable With	Acceptable With	Not
Item Reviewed	Acceptable	Discussion	Qualification	Acceptable
Serial Dilution Precision				
Internal Standard Recoveries				
Detection Limits/Sensitivity	$\sqrt{}$			
Calibrations	V			
ICP/MS Interference Check Samples	V			
Analytical Sequence				
Sample Preparation				
Quantitation of Positive Results			$\sqrt{}$	
A Critical Evaluation of			· · · · · · · · · · · · · · · · · · ·	
Instrumental Raw Data				

Blank Analysis Results: Vanadium was observed to be present in the method and trip blanks associated with the project samples. In addition, silver was observed to be present in the calibration and trip blanks associated with the project samples. Furthermore, beryllium and cadmium were observed to be present in the calibration blanks associated with the project samples. The reported positive results for vanadium in samples P-0591, P-0592, P-0593, P-0594, P-0595, P-0596, P-0597, 000423, 000424, 000425, 000426, 000427, and 000428; for silver in samples P-0591, P-0592, P-0593, P-0594, P-0595, P-0596, P-0597, 000423, 000424, 000425, 000426, 000427, and 000428; for beryllium in samples P-0593, P-0596, 000423, 000424, 000425, 000426, 000427, and 000428; and for cadmium in samples 000425, 000426, and 000427 should be considered "not-detected" and have been flagged "UJ" on the data tables. It should be noted that dilution factors and sample volumes were taken into account when evaluating blank contamination.

<u>Quantitation of Positive Results:</u> All positive results reported at concentrations greater than the MDL but less than the RL were qualified as estimated and have been flagged "J" on the data tables.

C. Mercury Analysis

Fourteen samples were analyzed for mercury by SW-846 Method 7471A. The findings offered in this report for this fraction are based on the items on the following table.

Item Reviewed	Acceptable	Acceptable With Discussion	Acceptable With Qualification	Not Acceptable
Holding Times	V			
Sample Condition Upon Receipt	V			
Blank Analysis Results			$\sqrt{}$	
LCS Recoveries				
Detection Limits/Sensitivity	V			
Calibrations				
Field Duplicate Precision	V			
Analytical Sequence				V /
Sample Preparation				
Quantitation of Positive Results			V	
A Critical Evaluation of	V			
Instrumental Raw Data				

<u>Blank Analysis Results:</u> Mercury was observed to be present in the calibration, method, and trip blanks associated with the project samples. The reported positive results for mercury in samples P-0591, P-0592, P-0593, P-0594, P-0595, P-0596, P-0597, 000423, 000424, 000425, 000426, 000427, and 000428 should be considered "not-detected" and have been flagged "UJ" on the data tables. It should be noted that dilution factors and sample volumes were taken into account when evaluating blank contamination.

<u>Quantitation of Positive Results:</u> All positive results reported at concentrations greater than the MDL but less than the RL were qualified as estimated and have been flagged "J" on the data tables.

3.0 Qualifier Summary Tables

A. ICP Metals Analysis

	Report		Validation	
Analyte	Number	Sample(s)	Qualifier	Reason(s) for Qualification
aluminum	G6D190170	P-0591, P-0592, P-0593, P-0594, P-0595, P-0596, P-0597, and 000424	J	T - positive result reported between the MDL and RL
calcium	G6D190170	000426	J	T - positive result reported between the MDL and RL
magnesium	G6D190170	P-0591, P-0592, P-0593, P-0594, P-0595, P-0596, P-0597, 000423, 000424, 000425, 000426, 000427, and 000428	J	T - positive result reported between the MDL and RL

B. ICP/MS Metals Analysis

	Report		Validation	
Analyte	Number	Sample(s)	Qualifier	Reason(s) for Qualification
-		1 \ /	-	
vanadium	G6D190170	P-0591, P-0592, P-0593,	UJ	2 - method blank contamination/
		P-0594, P-0595, P-0596,		7 - trip blank contamination
		P-0597, 000423, 000424,		
		000425, 000426, 000427,		
		and 000428		
silver	G6D190170	P-0591, P-0592, P-0593,	UJ	7 - trip blank contamination/
		P-0594, P-0595, P-0596,	/	Y – continuing calibration blank
		and P-0597		contamination
silver	G6D190170	000423, 000424, 000425,	UJ	Y – continuing calibration blank
		000426, 000427, and		contamination
		000428		
beryllium	G6D190170	P-0593, P-0596, 000423,	UJ	Y - continuing calibration blank
		000424, 000425, 000426,		contamination
		000427, and 000428		
cadmium	G6D190170	000425, 000426,	UJ	Y - continuing calibration blank
		and 000427		contamination
		G.13 500 127		oontamiddon

	Report		Validation	
Analyte	Number	Sample(s)	Qualifier	Reason(s) for Qualification
manganese	G6D190170	P-0591, P-0592, P-0593, P-0595, P-0596, and P-0597	J	T - positive result reported between the MDL and RL
lead	G6D190170	P-0591 and P-0596	J	T - positive result reported between the MDL and RL
silver	G6D190170	000429	J	T - positive result reported between the MDL and RL
zinc	G6D190170	000425, 000426, and 000428	J	T - positive result reported between the MDL and RL
vanadium	G6D190170	000429	J	T - positive result reported between the MDL and RL

C. Mercury Analysis

	Report		Validation	/
Analyte	Number	Sample(s)	Qualifier	Reason(s) for Qualification
mercury	G6D190170	P-0591, P-0592, P-0593, P-0594, P-0595, P-0596, P-0597, 000423, 000424, 000425, 000426, 000427, and 000428	UJ	2 - method blank contamination/ 7 - trip blank contamination/ Y – continuing calibration blank contamination
mercury	G6D190170	000429	J	T - positive result reported between the MDL and RL

4.0 Overall Assessment

Based on this quality assurance review, a few ICP/MS metals results and all mercury results were qualified as "not-detected" due to blank contamination. In addition, several ICP metals, ICP/MS metals, and mercury results were qualified as estimated because these positive results were reported between the MDL and RL.

5.0 Inorganic Data Qualifiers and Valid Reason Codes

Inorganic Data Qualifiers

- U Analyte not detected at the detection limit concentration.
- J Reported value is an estimated concentration.
- UJ Analyte not detected at an estimated detection limit concentration.
- R These data were rejected and were not used for any purposes.
- UR The analyte was not detected. The detection limit is unreliable and may be representative of a false negative. These data were rejected and are not usable for any purpose.

Valid Reason Codes

- 1 Holding time violation
- 2 Method blank contamination
- 3 Surrogate recovery
- 4 Matrix spike/matrix spike duplicate recovery
- 5 Matrix spike/matrix spike duplicate precision outside limits
- 6 Laboratory control sample recovery
- 7 Field blank contamination
- 8 Field duplicate precision outside limits
- 9 Other deficiencies (including cooler temperature)
- A Absence of supporting QC
- S ICV, CCV or column performance check problem
- Y Initial and continuing calibration blank problem
- M Interference check samples problem
- O Post-digestion spike outside of 85-115%
- F MSA correlation coefficient <0.995, or MSA not done
- G Serial dilution problem
- K DFTPP or BFB tuning problem
- Q Initial calibration problem
- X Internal standard recovery problem
- V Second source standard calibration verification problem
- L Low bias
- Z Retention time problem
- N Counting time error (radionuclide chemistry)
- W Detector instability (radionuclide chemistry)
- C Co-elution of compounds
- E Value exceeds linear calibration range
- I Interferences present during analysis
- Trace level compound, poor quantitation
- P 1C/2C precision outside of limits
- B LCS/LCSD precision outside limits
- D Lab Dup/Rep precision outside limits
- H High bias

6.0 Signatures

Report prepared by:

Eric T. Lahr

Senior Quality Assurance Chemist I

Report reviewed and approved by:

Konstadina Vlahogiani, M.S.

Senior Quality Assurance Chemist III/

Project Manager

Report reviewed and approved by:

Rock J. Vitale, CEAC, CPC Technical Director of Chemistry/

Principal

ENVIRONMENTAL STANDARDS, INC. 1140 Valley Forge Road P.O. Box 810 Valley Forge, PA 19482-0810

(610) 935-5577

Date: 9/1/06

Arco - Yerington SDG: G6D190170

			Lab Sample	G6D190	170001		·		G6D190	70002				G6D1901	170003					
			Field Sample	P-0591					P-0592					P-0593						
			Collect Date	4/11/200	6				4/11/200	6				4/11/2006						
			Туре	N					N	N N										
			Parent													•				
Method	CAS Number	Chemical Name	Units	Result	Qual / Reason	MDL	RDL	Uncert	Result	Qual / Reason	MDL	RDL	Uncert	Result	Qual / Reason	MDL	RDL	Uncert		
40CFRB	TSP	Total Suspended	G																	
40CFRJ	PM-10	Particulate Matte	G	0.007		0.0001	0.0001	0	0.0084		0.0001	0.0001	0	0.0074		0.0001	0.0001	0		
	AL	ALUMINUM	UG	103	J/T	40.8	240	0	110	J/T	40.8	240	0	123	J/T	40.8	240	0		
0B	CA	CALCIUM	UG	898	U	898	3000	0	898	U	898	3000	0	898	U	898	3000	0		
	FE	IRON	UG	128		14.4	120	0	132		14.4	120	0	155		14.4	120	0		
	MG	MAGNESIUM	UG	110	J/T	97.2	600	0	109	J/T	97.2	600	0	149	J/T	97.2	600	0		
	NA	SODIUM	UG	2020	U	2020	6000	0	2020	U	2020	6000	0	2020	u	2020	6000	0		
_	AG	SILVER	UG	0.026	UJ / 7,Y	0.026	1.2	0	0.025	UJ / 7,Y	0.025	1.2	0	0.033	UJ / 7,Y	0.033	1.2	0		
	AS	ARSENIC	UG	1.9	U	1.9	3.6	0	1.9	U	1.9	3.6	0	1.9	U	1.9	3.6	0		
	ВА	BARIUM	UG	34.8	U	34.8	120	0	34.8	U	34.8	120	0	34.8	U	34.8	120	0		
	BE	BERYLLIUM	UG	0.0084	U	0.0084	1.2	0	0.0084	U	0.0084	1.2	0	0.015	UJ/Y	0.015	1.2	0		
	CD	CADMIUM	UG	0.054	U	0.054	1.2	0	0.054	U	0.054	1.2	0	0.054	U	0.054	1.2	0		
	co	COBALT	UG	3.7	U	3.7	12	0	3.7	U	3.7	12	0	3.7	U	3.7	12	0		
	CR	CHROMIUM, TO	UG	10.3	U	10.3	12	0	10.3	U	10.3	12	0	10.3	Ü	10.3	12	0		
	CU	COPPER	UG	38.7		2.9	6	0	49.4		2.9	6	0	52.2		2.9	6	0		
	MN	MANGANESE	UG	4.8	J/T	1.9	6	0	5.9	J/T	1.9	6	0	5.4	J/T	1.9	6	0		
	МО	MOLYBDENUM	UG	1.1	U	1.1	6	0	1.1	U	1.1	6	0	1.1	U	1.1	6	0		
	NI	NICKEL	UG	3.5	U	3.5	6	0	3.5	U	3.5	6	0	3.5	U	3.5	6	0		
	PB	LEAD	UG	1	J/T	0.34	1.2	0	1.2		0.34	1.2	0	1.2		0.34	1.2	0		
	SE	SELENIUM	UG	1.7	U	1.7	3.6	0	1.7	Ü	1.7	3.6	0	1.7	U	1.7	3.6	0		
	V	VANADIUM	UG	3.2	UJ / 2,7	3.2	16	0	3.3	UJ / 2,7	3.3	16	0	3.1	UJ / 2,7	3.1	16	0		
	ZN	ZINC	UG	6.2	U	6.2	24	0	6.2	U	6.2	24	0	6.2	U	6.2	24	0		
SW7471	HG	MERCURY	UG	0.016	UJ / 2,7,Y	0.016	0.12	0	0.011	UJ / 2,7,Y	0.011	0.12	0	0.024	UJ / 2,7,Y	0.024	0.12	0		

Arco - Yerington SDG: G6D190170

			Lab Sample	G6D1901	170004				G6D190	170005				G6D190170006					
			Field Sample	P-0594					P-0595				P-0596						
			Collect Date	4/11/200	6				4/11/200	6			4/11/200	6	·				
			Туре	N										N					
			Parent																
Method	CAS Number	Chemical Name	Units	Result	Qual / Reason	MDL	RDL	Uncert	Result	Qual / Reason	MDL	RDL	Uncert	Result	Qual / Reason	MDL	RDL	Uncert	
40CFRB	TSP	Total Suspended	G																
40CFRJ	PM-10	Particulate Matte	G	0.0103		0.0001	0.0001	0	0.008		0.0001	0.0001	0	0.008		0.0001	0.0001	0	
SW601	AL	ALUMINUM	UG	129	J/T	40.8	240	0	124	J/T	40.8	240	0	126	J/T	40.8	240	0	
0B	CA	CALCIUM	UG	898	U	898	3000	0	898	U	898	3000	0	898	U	898	3000	0	
	FE	IRON	UG	174		14.4	120	0	150		14.4	120	0	147		14.4	120	0	
	MG	MAGNESIUM	UG	127	J/T	97.2	600	0	123	J/T	97.2	600	0	122	J/T	97.2	600	0	
	NA	SODIUM	UG	2020	U	2020	6000	0	2020	U	2020	6000	0	2020	U	2020	6000	0	
	AG	SILVER	UG	0.039	UJ / 7,Y	0.039	1.2	0	0.027	UJ / 7,Y	0.027	1.2	0	0.029	UJ / 7,Y	0.029	1.2	0	
	AS	ARSENIC	UG	1.9	U	1.9	3.6	0	1.9	U	1.9	3.6	0	1.9	U	1.9	3.6	0	
	ВА	BARIUM	UG	34.8	U	34.8	120	0	34.8	U	34.8	120	0	34.8	U	34.8	120	0	
	BE	BERYLLIUM	UG	0.0084	U	0.0084	1.2	0	0.0084	U	0.0084	1.2	0	0.012	UJ/Y	0.012	1.2	0	
	CD	CADMIUM	UG	0.054	U	0.054	1.2	0	0.054	U	0.054	1.2	0	0.054	U	0.054	1.2	0	
	co	COBALT	UG	3.7	U	3.7	12	0	3.7	U	3.7	12	0	3.7	υ	3.7	12	0	
	CR	CHROMIUM, TO	UG	10.3	U	10.3	12	0	10.3	U	10.3	12	0	10.3	U	10.3	12	0	
	CU	COPPER	UG	61.2		2.9	6	0	29.8		2.9	6	0	35.5		2.9	6	0	
]	MN	MANGANESE	UG	6.4		1.9	6	0	5.7	J/T	1.9	6	0	5.7	J/T	1.9	6	0	
	МО	MOLYBDENUM	UG	1.1	U	1.1	6	0	1.1	U	1.1	6	0	1.1	U	1.1	6	0	
	NI	NICKEL	UG	3.5	U	3.5	6	0	3.5	υ	3.5	6	0	3.5	U	3.5	6	0	
	РВ	LEAD	UG	1.3		0.34	1.2	0	1.3		0.34	1.2	0	1.1	J/T	0.34	1.2	0	
	SE	SELENIUM	UG	1.7	U	1.7	3.6	0	1.7	U	1.7	3.6	0	1.7	U	1.7	3.6	0	
	V	VANADIUM	UG	3.3	UJ / 2,7	3.3	16	0	3.2	UJ / 2,7	3.2	16	0	3.1	UJ / 2,7	3.1	16	0	
	ZN	ZINC	UG	6.2	U	6.2	24	0	6.2	U	6.2	24	0	6.2	U	6.2	24	0	
SW7471	HG	MERCURY	UG	0.016	UJ / 2,7,Y	0.016	0.12	0	0.0066	UJ / 2,7,Y	0.0066	0.12	0	0.019	UJ / 2,7,Y	0.019	0.12	0	

Arco - Yerington SDG: G6D190170

G6D190170008

G6D190170009

Lab Sample | G6D190170007

			Lan Campic	1					JOOD 100					GOD 50				
			Field Sample	P-0597					000423		·			000424				
			Collect Date	4/11/200	6				4/11/200	6				4/11/2000	5			
			Туре	FD					N					N				
			Parent	P-0591	-11													
Method	CAS Number	Chemical Name	Units	Result	Qual / Reason	MDL	RDL	Uncert	Result	Qual / Reason	MDL	RDL	Uncert	Result	Qual / Reason	MDL	RDL	Uncert
40CFRB	TSP	Total Suspended	G						0.0305		0.0001	0.0001	0	0.021		0.0001	0.0001	0
40CFRJ	PM-10	Particulate Matte	G	0.0077		0.0001	0.0001	0										
SW601	AL	ALUMINUM	UG	111	J/T	40.8	240	0	370		40.8	240	0	224	J/T	40.8	240	0
0B	CA	CALCIUM	UG	898	U	898	3000	0	898	U	898	3000	0	898	U	898	3000	0
	FE	IRON	UG	157	"	14.4	120	0	454		14.4	120	0	257		14.4	120	0
	MG	MAGNESIUM	UG	106	J/T	97.2	600	0	276	J/T	97.2	600	0	191	J/T	97.2	600	0
	NA	SODIUM	UG	2020	U	2020	6000	0	2020	U	2020	6000	0	2020	U	2020	6000	0
SW602	AG	SILVER	UG	0.043	UJ / 7,Y	0.043	1.2	0	0.23	UJ/Y	0.23	1.2	0	0.15	UJ/Y	0.15	1.2	0
0	AS	ARSENIC	UG	1.9	U	1.9	3.6	0	1.9	U	1.9	3.6	0	1.9	U	1.9	3.6	0
	ВА	BARIUM	UG	34.8	U	34.8	120	0	34.8	U	34.8	120	0	34.8	U	34.8	120	0
	BE	BERYLLIUM	UG	0.0084	U	0.0084	1.2	0	0.02	UJ/Y	0.02	1.2	0	0.016	UJ/Y	0.016	1.2	0
	CD	CADMIUM	UG	0.054	U	0.054	1.2	0	0.054	U	0.054	1.2	0	0.054	U	0.054	1.2	0
	co	COBALT	UG	3.7	U	3.7	12	0	3.7	U	3.7	12	0	3.7	U	3.7	12	0
	CR	CHROMIUM, TO	UG	10.3	U	10.3	12	0	10.3	U	10.3	12	0	10.3	Ų	10.3	12	0
	CU	COPPER	UG	56.5		2.9	6	0	449		2.9	6	0	305		2.9	6	0
	MN	MANGANESE	UG	5.3	J/T	1.9	6	0	14.6		1.9	6	0	11.9		1.9	6	0
	МО	MOLYBDENUM	UG	1.1	U	1.1	6	0	1.1	U	1.1	6	0	1,1	U	1.1	6	0
	Ni	NICKEL	UG	3.5	U	3.5	6	0	3.5	U	3.5	6	0	3.5	U	3.5	6	0
	РВ	LEAD	UG	1.2		0.34	1.2	0	2		0.34	1.2	0	1.4		0.34	1.2	0
	SE	SELENIUM	UG	1.7	U	1.7	3.6	0	1.7	Ų	1.7	3.6	0	1.7	U	1.7	3.6	0
	V	VANADIUM	UG	3.2	UJ / 2,7	3.2	16	0	3.7	UJ / 2,7	3.7	16	0	3.2	UJ / 2,7	3.2	16	0
	ZN		UG	6.2	U	6.2	24	0	6.2	U	6.2	24	0	6.2	U	6.2	24	0
SW7471	HG	MERCURY	UG	0.024	UJ / 2,7,Y	0.024	0.12	0	0.032	UJ / 2,7,Y	0.032	0.12	0	0.019	UJ / 2,7,Y	0.019	0.12	0

Report Generated: Thursday, August 31, 2006

Page: 3 of 5

Arco - Yerington SDG: G6D190170

			Lab Sample	G6D1901	170010				G6D1901	70011				G6D190170012				
			Field Sample	000425					000426					000427				
			Collect Date	4/11/200	6				4/11/200	6				4/11/200	6			
			Туре	N		•			N					N				
			Parent															
Method	CAS Number	Chemical Name	Units	Result	Qual / Reason	MDL	RDL	Uncert	Result	Qual / Reason	MDL	RDL	Uncert	Result	Qual / Reason	MDL	RDL	Uncert
40CFRB	TSP	Total Suspended	G	0.0247		0.0001	0.0001	0	0.0353		0.0001	0.0001	0	0.022		0.0001	0.0001	0
40CFRJ	PM-10	Particulate Matte	G															
SW601	AL	ALUMINUM	UG	334		40.8	240	0	440		40.8	240	0	296		40.8	240	0
0B	CA	CALCIUM	UG	898	U	898	3000	0	978	J/T	898	3000	0	898	U	898	3000	0
	FE	IRON	UG	442		14.4	120	0	542		14.4	120	0	442		14.4	120	0
	MG	MAGNESIUM	UG	356	J/T	97.2	600	0	334	J/T	97.2	600	0	242	J/T	97.2	600	0
	NA	SODIUM	UG	2020	U	2020	6000	0	2020	U	2020	6000	0	2020	U	2020	6000	0
SW602	AG	SILVER	UG	0.15	UJ/Y	0.15	1.2	0	0.25	UJ/Y	0.25	1.2	0	0.1	UJ / Y	0.1	1.2	0
0	AS	ARSENIC	UG	1.9	U	1.9	3.6	0	1.9	U	1.9	3.6	0	1.9	U	1.9	3.6	0
	ВА	BARIUM	UG	34.8	U	34.8	120	0	34.8	U	34.8	120	0	34.8	U	34.8	120	0
	BE	BERYLLIUM	UG	0.016	UJ/Y	0.016	1.2	0	0.017	UJ/Y	0.017	1.2	0	0.022	UJ/Y	0.022	1.2	0
	CD	CADMIUM	UG	0.061	UJ/Y	0.061	1.2	0	0.072	UJ/Y	0.072	1.2	0	0.069	UJ/Y	0.069	1.2	0
	co	COBALT	UG	3.7	U	3.7	12	0	3.7	U	3.7	12	0	3.7	U	3.7	12	0
	CR	CHROMIUM, TO	UG	10.3	U	10.3	12	0	10.3	U	10.3	12	0	10.3	U	10.3	12	0
	CU	COPPER	UG	277		2.9	6	0	454		2.9	6	0	181		2.9	6	0
	MN	MANGANESE	UG	13.7		1.9	6	0	18.2		1.9	6	0	12.4		1.9	6	0
	МО	MOLYBDENUM	UG	1.1	U	1.1	6	0	1.1	U	1.1	6	0	1.1	U	1.1	6	0
	NI	NICKEL	UG	3.5	U	3.5	6	0	3.5	U	3.5	6	0	3.5	Ų	3.5	6	0
	РВ	LEAD	UG	2.5		0.34	1.2	0	2.1		0.34	1.2	0	1.9		0.34	1.2	0
	SE	SELENIUM	UG	1.7	U	1.7	3.6	0	1.7	U	1.7	3.6	0	1.7	U	1.7	3.6	0
	V	VANADIUM	ŲG	3.7	UJ / 2,7	3.7	16	0	3.7	UJ / 2,7	3.7	16	0	3.6	UJ / 2,7	3.6	16	0
	ZN	ZINC	UG	9.9	J/T	6.2	24	0	15.3	J/T	6.2	24	0	6.2	Ü	6.2	24	0
SW7471	HG	MERCURY	UG	0.041	UJ / 2,7,Y	0.041	0.12	0	0.014	UJ / 2,7,Y	0.014	0.12	0	0.021	UJ / 2,7,Y	0.021	0.12	0

Arco - Yerington SDG: G6D190170

			Lab Sample	G6D1901	70013				G6D1901	70014			
			Field Sample	000428					000429				
			Collect Date	4/11/200	6				4/11/200	6	•		
			Туре	N					ТВ				
			Parent										
Method	CAS Number	Chemical Name	Units	Result	Qual / Reason	MDL	RDL	Uncert	Result	Qual / Reason	MDL	RDL	Uncert
40CFRB	TSP	Total Suspended	G	0.0242		0.0001	0.0001	0	0.0001	U	0.0001	0.0001	0
40CFRJ	PM-10	Particulate Matte	G										
	AL	ALUMINUM	UG	315		40.8	240	0	40.8	U	40.8	240	0
0B	CA	CALCIUM	UG	898	U	898	3000	0	898	U	898	3000	0
	FE	IRON	UG	403		14.4	120	0	14.4	U	14.4	120	0
	MG	MAGNESIUM	UG	238	J/T	97.2	600	0	97.2	U	97.2	600	0
	NA	SODIUM	UG	2020	U	2020	6000	0	2020	Ų	2020	6000	0
SW602	AG	SILVER	UG	0.094	UJ/Y	0.094	1.2	0	0.016	J/T	0.014	1.2	0
0	AS	ARSENIC	UG	1.9	U	1.9	3.6	0	1.9	U	1.9	3.6	0
	ВА	BARIUM	UG	34.8	U	34.8	120	0	34.8	U	34.8	120	0
1	BE	BERYLLIUM	UG	0.014	UJ/Y	0.014	1.2	0	0.0084	U	0.0084	1.2	0
	CD	CADMIUM	UG	0.054	U	0.054	1.2	0	0.054	U	0.054	1.2	0
	co	COBALT	UG	3.7	U	3.7	12	0	3.7	U	3.7	12	0
	CR	CHROMIUM, TO	UG	10.3	U	10.3	12	0	10.3	U	10.3	12	0
	CU	COPPER	UG	169		2.9	6	0	2.9	U	2.9	6	0
	MN	MANGANESE	UG	13.3		1.9	6	0	1.9	U	1.9	6	0
	МО	MOLYBDENUM	UG	1.1	U	1.1	6	0	1.1	U	1.1	6	0
	NI	NICKEL	UG	3.5	U	3.5	6	0	3.5	U	3.5	6	0
	РВ	LEAD	UG	1.8		0.34	1.2	0	0.34	U	0.34	1.2	0
	SE	SELENIUM	UG	1.7	U	1.7	3.6	0	1.7	U	1.7	3.6	0
	V	VANADIUM	UG	3.6	UJ / 2,7	3.6	16	0	3	J/T	2.9	12	0
	ZN	ZINC	UG	6.9	J/T	6.2	24	0	6.2	U	6.2	24	0
SW7471	HG	MERCURY	UG	0.028	UJ / 2,7,Y	0.028	0.12	0	0.01	J/T	0.00036	0.12	0

Report Generated: Thursday, August 31, 2006 Page: 5 of 5

Inorganic Analyses Support Documentation

Environmental Standards Project Name: Sample Collection Dates: Job Number: Project Manager: Laboratory:	we s	Reviewed By: Approved By: Completion Date: Applicable Sample No's.:							Refer to Table 1 in the Quality Assurance Review Lab. Control No.						
Deliverables: CLP [] Tier I		<u>·</u>		206 ₩ (%);?!						-	****		-
The following table indicates criteria which were examined, the identified problems, and support documentation attachments.		Fo	Criteria Examined in Detail Check (1) If Yes or Footnote Letter for Comments Below			Fa		Num	ed Yes or ber fo	r	Support Documentation Attachments Check (1) If Yes or Identify Attachment No.			ation ents) If dentify	
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	A 4 6 10 10 10 10 10 10 10 10 10 10 10 10 10	10 St. 10			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	\$7 10 to the state of the state	S. C.		<i></i>		\$ \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	And St.		
Holding Times					ور		-	77		inser.	ļ.				
Blank Analysis Results Matrix Spike (Predigestion) Results	*		•		"							-			
Duplicate Analysis Results Field Lob			Service Control of the Control of th							3.00					
Quantitation of Results			Are a second							- Carrie		1			
Detection Limits / Sensitivity	Ustar.	- 6								L		₩	·		
Initial Calibrations	ger l	_	Ser Paran							igre.		*	•		
Continuing Calibrations	Name of the	•	Market 1		1000					\$ -25'			*		
Laboratory Control Standards (LCS)	in the second		1							Ser "		"general"			
ICP Linear Range Analysis															
ICP Interference Checks	S. marrie									No.					
ICP Secial Dilutions	v				1					*					
ICP Post-Digostion Spike	•									* ***				L	
CFAA Post-Digestion Spikes					ļ										
GFAA Duplicate Injections						[لعوست	· 				
ICP Multiple Exposures	Service .				ļ					-					
GF/A Standard Additions															
CRDL Standards			\perp								:				
Others Control of Received	•	<u> </u>								•					600
Others Others Others Others Others	4	&.4 ·													_
															_
															_
New A	د جيم ۽	45 1.1	1.	عيم أرخو	- 4	-artic	J. C.	- المعدورة	مر ایل دا	J.					_
	· * * * * * * * * * * * * * * * * * * *	T '^'			- * 1	- * *		4		-1					

BLANK ANALYSIS RESULTS FOR INORGANIC PARAMETERS

		BLAI	√K 1	YPE	∀)				QUALIFICATION LIMIT FOR	QUALIFICATION LIMIT FOR
ATRIX	М	ETH(OD.		ENT		BLANK SAMPLE		CONCENTRATION	AQUEOUS SAMPLES (ug/L)	SOLID SAMPLES (mg/Kg)
, S)	īcB	CCB	PREP.	TRIP	EQUIPMENT	FIELD	NUMBER	CONTAMINANT	(units)	5x	5x
			1				GCD 26,0000-2214	V	3.2.49		16.5 3
6.8.0			Ĺ				GGD24000-34	He	0.00849	a rongget dan	0.0423
1.00				V			000429	<u> </u>	3.000		0.05 4
4.00				Marie and the			Tr. Land	<u> </u>	0.0153	J. Marie 1985	0-08 4
4							g garden score	<u> </u>	3.05	· · · · · ·	15.09
ba.				- Agent			CER 110:30	<u>N.</u>	0.0/50	0.0755	The Andrews
7		*					CCB (10:35)	Щ	0.023 **	0.115 44	
		1.000					CC & (6	4,	0.084	-6.440	
		1					- Augusta	st	0.0784	-0.3°0 *	Bern a property
ľ							cesti	Pb	0.1274	-0.045°	and the state of t
	İ	100						<u> </u>	0.12-2-**	0.00	and the second second second
		a period parties					£	.	0.08/ 4/2	0.405 4	
	j,						and the second	<u>L.d.</u>	0.078	0.390	
		İ					,				
					-			t and the second			
								The state of the s			
						ĺ					
				ľ							
						-		· · · · · · · · · · · · · · · · · · ·			
								10 Table 10			
							<u> </u>	70° 170° H			.
									<u> </u>		
							ļ			:	
			1				}				<u> </u>

Notes: See com pg. Par impact on data graphy.

EVALUATION OF INORGANIC DUPLICATE ANALYSIS PRECISION

	PRECISI	ON OBJECTIVES*
Units ug	Analyte > or = 5 X RL	RPD < or = 40
	Analyte < 5 X RL	Difference < or = RL Times 2

^{*} Enter the project-specific or default acceptance criteria

	P-0591			P-0	597				
1	Analyte			Analyte					
ANALYTE	Concentration	Qual	RL	Concentration	Qual	RL	Difference	RPD	Notes
aluminum	103		240	111		240	8	NA	IN
iron	128		120	157		120	29	NA	IN
magnesium	110		600	106		600	4	NA	iN
silver	0.026		1.2	0.043		1.2	0.017	NA	IN
copper	38.7		6	56.5		6	NA	37.39%	IN
manganese	4.8		6	5.3		6	0.5	NA	IN
lead	1		1.2	1.2		1.2	0.2	NA	IN
vanadium	3.2		12	3.2		12	0	NA	IN
mercury	0.016		0.12	0.024		0.12	0.008	NA	IN
							NA	#DIV/0!	#DIV/0!
							NA	#DIV/0!	#DIV/0!
							NA	#DIV/0!	#DIV/0!
							NA	#DIV/0!	#DIV/0!
							NA	#DIV/0!	#DIV/0!
							NA	#DIV/0!	#DIV/0!
							NA	#DIV/0!	#DIV/0!
							NA	#DIV/0!	#DIV/0!

NOTES:

Qual) Column to enter J, U, U*, or B

RPD) Relative Percent Difference

RL) Reporting Limit

- J) The analyte concentration should be considered estimated.
- U) The analyte was not-detected in the sample. The numerical value will be used for comparison purposes.
- U* or B) The result was blank qualified. The numerical value will be used for comparison purposes.
- NA) The RPD or Difference is not applicable.
- 1) Both results are > or = 5 X RL and RPD over acceptance limit, flag positive results "J".
- 2) At least one of the results is < 5 X RL and difference is over acceptance limit, flag positive results "J" and "not-detected" results "UJ".

Comments:	

METHOD BLANK REPORT

TOTAL Metals

Client Lot #...: G6D190170

Matrix..... AIR

PARAMETER	RESULT	REPORTING	JNITS METHO	OD	PREPARATION- ANALYSIS DATE	WORK ORDER #
MR Lot-Samole	#• G6D260000-	334 Prep Bato	ch #: 611633	1		
Arsenic	ND		ıg SW84:	5 6020	04/25-04/26/06	H34E11AC
Barium	ND	120 U		6 6020	04/25-04/26/06	H34E11AD
Beryllium	ND	1.2 t		5 6020	04/25-04/26/06	H34E11AE
Cadmium	ND	1.2 U	3	6 6020	04/25-04/26/06	H34E11AF
Chromium	ND	12.0 u		6 6020	04/25-04/26/06	H34E11AH
Cobalt	ND	12.0 t	· J	6 6020	04/25-04/26/06	H34E11AG
Copper	ND	6.0 u	9	6 6020	04/25-04/26/06	H34E11AJ
Lead	ND	1.2 t Dilution Factor	-	6 6020	04/25-04/26/06	H34EllAN
Manganese	ND	6.0 t	· •	6 6020	04/25-04/26/06	H34EllAK
Molybdenum	ND	6.0 U	3	6 6020	04/25-04/26/06	H34E11AL
Nickel	ND	6.0 t	2	6 6020	04/25-04/26/06	H34E11AM
Selenium	ND	3.6 No Dilution Factor	_	6 6020	04/25-04/26/06	H34E11AP
Silver	ND	1.2 Dilution Factor	•	6 6020	04/25-04/26/06	H34EllAA
Vanadium	3.2 B	12.0 Dilution Factor	<u>-</u>	6 6020	04/25-04/26/06	H34E11AQ
Zinc	ND	24.0 Dilution Factor	<i>3</i>	6 6020	04/25-04/26/06	H34El1AR

(Continued on next page)

METHOD BLANK REPORT

TOTAL Metals

Client Lot #...: G6D190170

Matrix..... AIR REPORTING PREPARATION-WORK METHOD ANALYSIS DATE ORDER # LIMIT UNITS RESULT MB Lot-Sample #: G6D260000-343 Prep Batch #...: 6116343 SW846 6010B 04/25-04/28/06 H34FM1AA 240 Aluminum ug Dilution Factor: 1 04/25-04/28/06 H34FM1AC SW846 6010B 3000 Calcium NDug Dilution Factor: 1 04/25-04/28/06 H34FM1AD SW846 6010B Iron ND 120 ug Dilution Factor: 1 SW846 6010B 04/25-04/28/06 H34FM1AE 600 ug Magnesium ND Dilution Factor: 1 04/25-04/28/06 H34FM1AF SW846 6010B Sodium ND6000 ug Dilution Factor: 1 MB Lot-Sample #; G6D2600Q0-311 Prep Batch #...: 6116311 04/27/06 H37E81AA 0.0084 B 0.12 SW846 7471A Mercury ug Dilution Factor: 1

Calculations are performed before rounding to avoid round-off errors in calculated results.

NOTE(S):

B Estimated result. Result is less than RL.

LABORATORY CONTROL SAMPLE DATA REPORT

TOTAL Metals

Lot-Sample #...: G6D190170

Matrix..... AIR

	SPIKE	MEASURED	•	PERCNT				PREPARATION-	PREP
PARAMETER	THUOMA	TRUUMA	UNITS	RECVRY	RPD	METHO:	D	ANALYSIS DATE	BATCH #
Mercury	0.600	0.596 🖊	, ug	99 🔨		SW846	7471A	04/27/06	6116311
	0.600	0.606 🐔	ug	101 ′	1.6	SW846	7471A	04/27/06	6116311
		E	ilution Fa	ctor: 1					
Arsenic	240	221	ug	92		SW846	6020	04/25-04/26/06	
	240	225	ug	94	1.9	SW846	6020	04/25-04/26/06	6116334
		D	ilution Fa	ctor: 1					
Barium	240	236	ug	99		SW846		04/25-04/26/06	
	240	234	ug	98	0.90	SW846	6020	04/25-04/26/06	6116334
		מ	ílution Fa	ctor: 1					
Beryllium	240	217	ug	90		SW846	6020	04/25-04/26/06	
	240	220	ug	92	1.6	SW846	6020	04/25-04/26/06	6116334
		D	ilution Fa	ctor: 1					
Cadmium	240	227	ug	95		SW846		04/25-04/26/06	
	240	229	ug	95	1.0	SW846	6020	04/25-04/26/06	6116334
		D	ilution Fa	ctor: 1					
Chromium	240	220	ug	92		SW846	6020	04/25-04/26/06	6116334
	240	219	ug	91	0.33	SW846	6020	04/25-04/26/06	6116334
		D	ilution Fa	ctor: 1					
Cobalt	240	223	ug	93		SW846	6020	04/25-04/26/06	6116334
	240	224	ug	93	0.42	SW846	6020	04/25-04/26/06	6116334
		D	ilution Fa	ctor: 1					
Copper	240	228/	ug	95		SW846		04/25-04/26/06	
	240	229	ug	96	0.44	SW846	6020	04/25-04/26/06	6116334
		D	ilution Fa	ctor: 1					
Lead	240	230	ug	96		SW846		04/25-04/26/06	
	240	230	ug	96	0.07	SW846	6020	04/25-04/26/06	6116334
		D	ilution Fa	ctor: 1					
Manganese	240	233	ug	97		SW846	6020	04/25-04/26/06	
-	240	235	ug	98	0.82	SW846	6020	04/25-04/26/06	6116334
		D	ilution Fa	ctor: 1					

(Continued on next page)

LABORATORY CONTROL SAMPLE DATA REPORT

TOTAL Metals

Lot-Sample #...: G6D190170

Matrix..... AIR

	SPIKE	MEASURED		PERCNT					PREP
PARAMETER	THUOMA	AMOUNT	UNITS	RECVRY	RPD	METHOI		ANALYSIS DATE	
Molybdenum	240		ug	98		SW846		04/25-04/26/06	
	240	•	ug	99 🖍	1.2 /	SW846	6020	04/25-04/26/06	6116334
		Di	lution Fac	tor: 1					
Nickel	240	229	ug	95		SW846	6020	04/25-04/26/06	6116334
	240	228	ug	95	0.56	SW846	6020	04/25-04/26/06	6116334
		Dì	lution Fac	tor: 1					
Selenium	240	220	ug	92		SW846	6020	04/25-04/26/06	6116334
	240		ug	96	4.6	SW846	6020	04/25-04/26/06	6116334
			lution Fac	tor: 1					
Silver	60.0	58.0	ug	97		SW846	6020	04/25-04/26/06	6116334
022102	60.0	1.5	uq	97	0.06	SW846		04/25-04/26/06	
			lution Fac	tor: 1					
Vanadium	240	223	ug	93		SW846	6020	04/25-04/26/06	6116334
Vallacium	240		ug	93	0.05	SW846		04/25-04/26/06	
	210		lution Fac	* *				, , ,	
Zinc	240	227	ug	95		SW846	6020	04/25-04/26/06	6116334
BILLO	240		uq	97	2.3	SW846		04/25-04/26/06	
	210		lution Fac		_,,				
Aluminum	2400	2230	ug	93 🖍		SW846	6010B	04/25-04/28/06	6116343
Atuminum	2400	/	ug	93	0.07	SW846		04/25-04/28/06	
	2100		lution Fac					, , ,	
Calcium	60000	54600	uq	91		SW846	6010B	04/25-04/28/06	6116343
Carcian	60000		ug	91	0.13	SW846		04/25-04/28/06	
	00000	•	lution Fac						
Iron	1200	1150	ug	96		SW846	6010B	04/25-04/28/06	6116343
11011	1200		uq	98	2.7		6010B	04/25-04/28/06	
	2200		lution Fac					, , ,	
No. and a second	50000	55700	11/7	93		ChiQAA	6010B	04/25-04/28/06	6116343
Magnesium	60000 60000	1	ug ug	93 93	0 11	SW846		04/25-04/28/06	
	60000	*	ug lution Fac		♥, ⊥⊥	DHOZO	010D	01,20 01,20,00	J
		דעו	LUCIUM FAC						

(Continued on next page)

LABORATORY CONTROL SAMPLE DATA REPORT

TOTAL Metals

Lot-Sample #...: G6D190170

Matrix..... AIR

	SPIKE	MEASURED		PERCNT			PREPARATION-	PREP
PARAMETER	AMOUNT	AMOUNT	UNITS	RECVRY	RPD	METHOD	ANALYSIS DATE	BATCH #
Sodium	60000	52900	ug	88		SW846 6010B	04/25-04/28/06	6116343
	60000	53200 🐔	ug	89 🖊	0.57	SW846 6010B	04/25-04/28/06	6116343
		n:	Charten Pag	trans. 1				

Dilution Factor: 1

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

LABORATORY CONTROL SAMPLE EVALUATION REPORT

TOTAL Metals

Lot-Sample #...: G6D190170

Matrix..... AIR

PARAMETER	PERCENT RECOVERY	RECOVERY	RPD LIMITS	METHO	n	PREPARATION- ANALYSIS DATE	PREP- BATCH #
Mercury	99	(75 - 125)	<u> </u>		7471A	04/27/06	6116311
ricicary	101	(75 - 125) 1.6	(0-20)		7471A	04/27/06	6116311
		Dilution Fact				, ,	
Arsenic	92	(75 - 125)		SW846	6020	04/25-04/26/06	
	94	(75 - 125) 1.9	(0-20)	SW846	6020	04/25-04/26/06	6116334
		Dilution Fact	or: 1				
Barium	99	(75 - 125)		SW846	6020	04/25-04/26/06	6116334
	98	(75 - 125) 0.90	(0-20)	SW846	6020	04/25-04/26/06	6116334
		Dilution Fact	or: 1				
Beryllium	90	(75 - 125)		SW846	6020	04/25-04/26/06	6116334
	92	(75 - 125) 1.6	(0-20)	SW846	6020	04/25-04/26/06	6116334
		Dilution Fact	or: 1				
Cadmium	95	(75 - 125)		SW846	6020	04/25-04/26/06	6116334
	95	(75 - 125) 1.0	(0-20)	SW846	6020	04/25-04/26/06	6116334
		Dilution Fact	or: 1				
Chromium	92	(75 - 125)		SW846	6020	04/25-04/26/06	6116334
	91	(75 - 125) 0.33	(0-20)	SW846	6020	04/25-04/26/06	6116334
		Dilution Fact	or: 1				
Cobalt	93 🚩	(75 - 125)		SW846	6020	04/25-04/26/06	6116334
	93	(75 - 125) 0.42	(0-20)	SW846	6020	04/25-04/26/06	6116334
		Dilution Fact	or: 1				
Copper	95‴	(75 - 125)		SW846	6020	04/25-04/26/06	
	96	(75 - 125) 0.44	(0-20)	SW846	6020	04/25-04/26/06	6116334
		Dilution Fact	tor: 1				
Lead	96	(75 - 125)		SW846	6020	04/25~04/26/06	6116334
	96	(75 - 125) 0.07	(0-20)	SW846	6020	04/25-04/26/06	6116334
		Dilution Fact	tor: 1				
Manganese	97	(75 - 125)		SW846	6020	04/25-04/26/06	6116334
	98	(75 - 125) 0.82	(0-20)	SW846		04/25-04/26/06	
		Dilution Fact					

(Continued on next page)

LABORATORY CONTROL SAMPLE EVALUATION REPORT

TOTAL Metals

Lot-Sample #...: G6D190170

Matrix..... AIR

PARAMETER Molybdenum	PERCENT RECOVERY 98 99	RECOVERY RPD LIMITS RPD LIMITS (75 - 125) (75 - 125) 1.2 (0-20) Dilution Factor: 1	METHOD SW846 6020 SW846 6020	PREPARATION- ANALYSIS DATE 04/25-04/26/06 04/25-04/26/06	6116334
Nickel	95 95	(75 - 125) (75 - 125) 0.56 (0-20) Dilution Factor: 1	SW846 6020 SW846 6020	04/25-04/26/06 04/25-04/26/06	
Selenium	92 96	(75 - 125) (75 - 125) 4.6 (0-20) Dilution Factor: 1	SW846 6020 SW846 6020	04/25-04/26/06 04/25-04/26/06	
Silver	97 97	(75 - 125) (75 - 125) 0.06 (0-20) Dilution Factor: 1	SW846 6020 SW846 6020	04/25-04/26/06 04/25-04/26/06	
Vanadium	93 93	(75 - 125) (75 - 125) 0.05 (0-20) Dilution Factor: 1	SW846 6020 SW846 6020	04/25-04/26/06 04/25-04/26/06	
Zinc	95 97	(75 - 125) (75 - 125) 2.3 (0-20) Dilution Factor: 1	SW846 6020 SW846 6020	04/25-04/26/06 04/25-04/26/06	
Aluminum	93 ~ 93	(75 - 125) (75 - 125) 0.07 (0-20) Dilution Factor: 1	SW846 6010B SW846 6010B	04/25-04/28/06 04/25-04/28/06	
Calcium	91 91	(75 - 125) (75 - 125) 0.13 ★0-20) Dilution Factor: 1	SW846 6010B SW846 6010B	04/25-04/28/06 04/25-04/28/06	
Iron	96 / 98	(75 - 125) (75 - 125) 2.7 (0-20) Dilution Factor: 1	SW846 6010B SW846 6010B	04/25-04/28/06 04/25-04/28/06	
Magnesium	93 93	(75 - 125) (75 - 125) 0.11 (0-20) Dilution Factor: 1	SW846 6010B SW846 6010B	04/25-04/28/06 04/25-04/28/06	

(Continued on next page)

LABORATORY CONTROL SAMPLE EVALUATION REPORT

TOTAL Metals

Lot-Sample #...: G6D190170

Matrix..... AIR

	PERCENT	RECOVERY	RPD		PREPARATION-	PREP-
PARAMETER	RECOVERY	LIMITS	RPD LIMITS	METHOD	ANALYSIS DATE	BATCH #
Sodium	88	(75 ~ 125)		SW846 6010B	04/25-04/28/06	6116343
	89~	(75 - 125)	0.57 (0-20)	SW846 6010B	04/25-04/28/06	6116343
		Diluti	on Factor: 1			

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

QC DATA ASSOCIATION SUMMARY

G6D190170

Sample Preparation and Analysis Control Numbers

SAMPLE#	MATRIX	ANALYTICAL METHOD	LEACH BATCH #	PREP BATCH #	MS RUN#
001	AIR	SW846 6020		6116334	
	AIR	SW846 7471A		6116311	
	AIR	SW846 6010B		6116343	
002	AIR	SW846 6020		6116334	
	AIR	SW846 7471A		6116311	
	AIR	SW846 6010B		6116343	
003	AIR	SW846 6020		6116334	
	AIR	SW846 7471A		6116311	
	AIR	SW846 6010B		6116343	
004	AIR	SW846 6020		6116334	
	AIR	SW846 7471A		6116311	
	AIR	SW846 6010B		6116343	
005	AIR	SW846 6020		6116334	
	AIR	SW846 7471A		6116311	
	AIR	SW846 6010B		6116343	
				6116001	
0.06	AIR	SW846 6020		6116334	
	AIR	SW846 7471A		6116311	
	AIR	SW846 6010B		6116343	
007	AIR	SW846 6020		6116334	
007	AIR	SW846 7471A		6116311	
	AIR	SW846 6010B		6116343	
	HIK	511010 00102		02200	
800	AIR	SW846 6020		6116334	
000	AIR	SW846 7471A		6116311	
	AIR	SW846 6010B		6116343	
009	AIR	SW846 6020		6116334	
	AIR	SW846 7471A		6116311	
	AIR	SW846 6010B		6116343	
010	AIR	SW846 6020		6116334	
	AIR	SW846 7471A		6116311	
	AIR	SW846 6010B		6116343	
011	AIR	SW846 6020		6116334	
	AIR	SW846 7471A		6116311	
	AIR	SW846 6010B		6116343	

(Continued on next page)

QC DATA ASSOCIATION SUMMARY

G6D190170

Sample Preparation and Analysis Control Numbers

		ANALYTI	ICAL	LEACH	PREP	
SAMPLE#	MATRIX	METHOD		BATCH #	BATCH #	MS RUN#
012	AIR	SW846 6	5020		6116334	
	AIR	SW846 7	7471A		6116311	
	AIR	SW846 6	5010B		6116343	
013	AIR	SW846 6	5020		6116334	
	AIR	SW846 7	7471A		6116311	
	AIR	SW846 6	5010B		6116343	
014	AIR	SW846 6	5020		6116334	
	AIR	SW846 7	7471A		6116311	
	AIR	SW846 6	5010B		6116343	

CALIBRATION REPORT

Method: 6020 (SOP: SAC-MT-001)	M01	Reported: 04/28/06 14:11:50			3 14:11:50
Department: 120 (Metals)				Sou	rce: MetEdi
Sample: ICV (ICV)	Mult: 1.00	Diff:	1.00	Divs:	1.000
Instrument: ICPMS M01	Channel 261				
File: 060426B1 # 11	Method 6020_				
Acquired: 04/26/2006 16:51:05	M01				
Calibrated: 04/26/2006 16:42:19			1	Units: ug/L	

CASN	Analyte Name	M/S	Area	Found	True	%R	Q
7440-41-7	Beryllium	9	21656 🛩	82.107 -	80.000	103	
	Aluminum	27	3771750	845.53	800.00	106	
7440-62-2	Vanadium	51	800067	83.300	80.000	104	
7440-47-3	Chromium	52	779162	83.500	80.000	104	
7439-89-6	Iron	54	709117	899.45	800.00	112	
7439-89-6	Iron	57	264017	863.81	800.00	109	
7439-96-5	Manganese	55	1150990	84.759	80.000	106	
7440-48-4	•	59	859100	83.338	80.000	104	
7440-02-0	Nickel	60	179776	82.984	000.08	104	
7440-50-8	Copper	65	163272	82.864	80.000	104	
7440-66-6	Zinc	68	60160	83.341	000.08	104	
7440-38-2	Arsenic	75	159066	110,18	80.000	101	
7782-49-2	Selenium	82	13218	80.823	80.000	101	
7439-98-7	Molybdenum	97	115647	83.056	80.000	104	
7440-22-4	•	107	283670	42,300	40.000	106	
7440-43-9	Cadmium	111	116594	82.191	80.000	103	
7440-36-0	Antimony	121	182537	41,524	40.000	104	
7440-39-3	Barium	135	104312	82.505	80.000	103	
7440-28-0	Thallium	205	462085	41.040_	40.000	103	
7439-92-1	Lead	208	1250895	84.760	80.000	106	
CASN	ISTD Name	M/S	Area	Amount			Q
LITH!UM6	Lithium-6	6	943601				\square
7440-56-4	Germanium	72	1510163				☑
7440-74-6	Indium	115	1316873				\square
7440-30-4	Thulium	169	871425				\square

	The second secon	
	Reviewed by:	Date:
IDD Deports	Severn Trent Laboratories	Version: 6.02.068

View Page 3 of 50

CALIBRATION REPORT

STL Sacramento					LIDHAII	CIVIT	1 0111
Method: 6020 (SOP: SAC-MT-001)		M01			Reported:	04/28/06	14:11:50
Department: 120 (Metals)						Source	e: MetEdit
Sample: CCV 1 (CCV)		Mult	1.00	Dilf:	1.00	Divs:	1.000
Instrument: ICPMS M01		Channe	1 261				
File: 060426B1 # 18		Method 6	3020_			100	
Acquired: 04/26/2006 17:24:43		MO1					
Calibrated: 04/26/2006 16:42:19					Units: ug/L		
CASN Analyte Name	M/S	Area	Found		True	e <u>%</u>	R Q
7440-41-7 Beryllium	9	26492	100.01		100.00	0 1	00
7429-90-5 Aluminum	27	23123258	5360.8		5100.0	0 1	05
7440-62-2 Vanadium	51	969064	102.50		100.0	It 0	03
7440-47-3 Chromium	52	912017	100.85		100.0	0 1	01
7439-89-6 Iron	54	3504194	5166.7		5100.0		01
7439-89-6 Iron	57	1430350	5166.3		5100.	=	01
7439-96-5 Manganese	55	1374917	103.71		100.0	•	04
7440-48-4 Cobalt	59	1021783	101.48		100.0	-	01
7440-02-0 Nickel	60	213629	100.98		100.0		01
7440-50-8 Copper	65	194442	101.06		100.0	-	01
7440-66-6 Zinc	68	71626	102.02		100.0	-	02
7440-38-2 Arsenic	75	190572	101.39		100.0	_	01
7782-49-2 Selenium	82	16420	103.47		100.0	•	03
7439-98-7 Molybdenum	97	281041	206.68		200.0	_	03
7440-22-4 Silver	107	338978	50.645		50.00	-	01
7440-43-9 Cadmium	111	142649	100.75		100.0	-	01
7440-36-0 Antimony	121	221626	50.516		50.00		01
7440-39-3 Barium	135	127243	100.88		100.0	-	01
7440-28-0 Thallium	205	584073	51.062		50.00		02
7439-92-1 Lead	208	1521853 🛫	101.52		100.0	O" 1	02

1403-35-1	Load				
CASN	ISTD Name	M/S	Area	Amount	<u>Q</u>
LITHIUM6	Lithium-6	6	947549		☑
7440-56-4	Germanium	72	1474959		
7440-74-6	Indium	115	1314344		
7440-30-4	Thulium	169	885258		\square

)
	Reviewed by:	Date:
<u> </u>		
IDB Reports	Severn Trent Laboratories	Version: 6.02.068

View Page 7 of 50

CALIBRATION REPORT

Method: 6020 (SOP: SAC-MT-001)	M01	Reported: 04/28/06 14:11:			14:11:50
Department: 120 (Metals)				Sou	rce: MetEd
Sample: CCV 2 (CCV)	Mult: 1.00	Dilf:	1.00	Divs:	1.000
Instrument: ICPMS M01	Channel 261				
File: 060426B1 # 20	Method 6020_				
Acquired: 04/26/2006 17:33:24	MO1				
Calibrated: 04/26/2006 16:42:19				Units: ug/L	

CASN	Analyte Name	M/S	Area	Found	True	%R	Q
7440-41-7	Beryllium	9	26596	101.22	100.00	101	
	Aluminum	27	23050413	5260.8	5100.0	103	
7440-62-2	Vanadium	51	979205	101.99	100.00	102	
7440-47-3	Chromium	52	918556	99.966	100.00	100	
7439-89-6	Iron	54	3515780	5101.5	5100.0	100	
7439-89-6	tron	57	1442567	5129.1	5100.0	101	
7439-96-5	Manganese	55	1378637	102.37	100.00	102	
7440-48-4	Cobalt	59	1022893	100.02	100.00	100	
7440-02-0	Nickel	60	213862	99.517	100.00	99.5	
7440-50-8	Copper	65	195321	99.938	100.00	99.9	
7440-66-6	Zinc	68	71922	100.83	100.00	101	
7440-38-2	Arsenic	75	191987	100.49	100.00	100	
7782-49-2	Selenium	82	16353	101.39	100.00	101	
7439-98-7	Molybdenum	97	282821	204.76	200.00	102	
7440-22-4		107	337778	50.232	50.000	100	
7440-43-9	Cadmium	111	141960	99.794	100.00	99.8	
7440-36-0	Antimony	121	222603	50.501	50.000	101	
7440-39-3	Barium	135	127642	100.73	100.00	101	
7440-28-0	Thallium	205	579864	50,200	50.000	100	
7439-92-1	Lead	208	1518566	100.31	100.00	100	
CASN	ISTD Name	M/S	Area	Amount			Q
LITHIUM6	Lithium-6	6	939852				Ø
7440-56-4	Germanium	72	1498179				\square
7440-74-6	Indium	115	1320566				\square
7440-30-4	Thulium	169	894011				

Lace 18th worked payers.

<u></u>	The state of the s	
	Reviewed by:	Date:
ID9 Reports	Severn Trent Laboratories	Version: 6.02.068

Page 9 of 50 View

CALIBRATION REPORT

Method: 6020 (SOP: SAC-MT-001)	M01	Reported: 04/28/06 14:11:50			
Department: 120 (Metals)				Sou	rce: MetEdi
Sample: CCV 3 (CCV)	Mult: 1.00	Dilf:	1.00	Divs:	1.000
Instrument: ICPMS M01	Channel 261				
File: 060426B1 # 32	Method 6020_				
Acquired: 04/26/2006 18:25:06	MO1				
Calibrated: 04/26/2006 16:42:19	*			Units: ug/L	

CASN	Analyte Name	M/S	Area	Found	True	%R	Q
7440-41-7		9	26218	100.91	100.00	101	
	Aluminum	27	23113368	5256.4	5100.0	103	
	Vanadium	51	971490	100.86	100.00	101	
	Chromium	52	927834	100.65	100.00	101	
7439-89-6		54	3564532	5155.7	5100.0	101	
7439-89-6		57	1447918	5130.0	5100.0	· 101	
	Manganese	55	1375019	101.75	100.00	102	
7440-48-4	•	59	1023069	99.684	100.00	99.7	
7440-02-0		60	213715	99.103	100.00	99.1	
7440-50-8		65	194756	99.297	100.00	99.3	
7440-66-6	• •	68	71154	99.372	100.00	99.4	
7440-38-2	Arsenic	75	192280	100.27	100.00	100	
7782-49-2	Selenium	82	16299	100.69	100.00	101	
7439-98-7	Molybdenum	97	281534	203.11	200.00	102	
7440-22-4	Silver	107	337341	50.608	50.000	101	
7440-43-9	Cadmium	111	141087	100.05	100.00	100	
7440-36-0	Antimony	121	220945	50.564	50.000	101	
7440-39-3	-	135	125313	100.14	100.00	100	
7440-28-0	Thallium	205	578444	50,157	50.000	100	
7439-92-1	Lead	208	1513826	100.16	100.00	100	
CASN	ISTD Name	M/S	Area	Amount			Q
LITHIUM6	Lithium-6	6	929364				$\overline{\mathbf{A}}$
7440-56-4	Germanium	72	1503498				Ø
7440-74-6	Indium	115	1309110				\square
7440-30-4	Thulium	169	892592				V

Reviewed by: Date:

IDB Reports Severn Trent Laboratories Version: 6.02.068

View Page 11 of 50

CALIBRATION REPORT

Method: 6020 (SOP: SAC-MT-001)	M01		Reported: 04/28/06 14:11:50			
Department: 120 (Metals)				Sou	urce: MetEd	
Sample: CCV 4 (CCV)	Mult: 1.00	Diff:	1.00	Divs:	1.000	
Instrument: ICPMS M01	Channel 261					
File: 060426B1 # 34	Method 6020_					
Acquired: 04/26/2006 18:33:48	M01					
Calibrated: 04/26/2006 16:42:19				Jnits: ug/L		
CASN Applyto Namo M/S	Area Four	d	T	rue	%R 0	

CASN	Analyte Name	M/S	Area	Found	True	%R	Q
7440-41-7	Bervilium	9	26444	100.88	100.00	101	
7429-90-5	•	27	23015142	5186.3	5100.0	102	
7440-62-2	Vanadium	51	986242	101.42	100.00	101	
7440-47-3	Chromium	52	930939	100.02	100.00	100	
7439-89-6		54	3587514	5140.2	5100.0	101	
7439-89-6	Iron	57	1461790	5131.0	5100.0	101	
7439-96-5	Manganese	55	1389639	101.87	100.00	102	
7440-48-4	•	59	1028838	99.314	100.00	99.3	
7440-02-0	Nickel	60	214677	98.620	100.00	98.6	
7440-50-8		65	196111	99.058	100.00	99.1	
7440-66-6		68	72561	100.42	100.00	100	
7440-38-2	Arsenic	75	194432	i00.47	100.00	100	
7782-49-2		82	16512	101.06	100.00	101	
7439-98-7	Molybdenum	97	282060	201.60	200.00	101	
7440-22-4	Silver	107	334725	50.548	50.000	101	
7440-43-9	Cadmium	111	141656	101.12	100.00	101	
7440-36-0	Antimony	121	222626	51.289	50.000	103	
7440-39-3	-	135	127143	101.68	100.00	102	
7440-28-0	Thallium	205	573493	49.438	50.000	98.9	
7439-92-1	Lead	208	1497397	98.491	100.00	98.5	
CASN	ISTD Name	M/S	Area	Amount			Q
LITHIUM6	Lithium-6	6	938143				abla
	Germanium	72	1517548				☑
7440-74-6	Indium	115	1300440				Ø
7440-30-4		169	887738				

Reviewed by: Date:

IDB Reports Severn Trent Laboratories Version: 6.02,068

View Page 13 of 50

CALIBRATION REPORT

Method: 6020 (SOP: SAC-MT-001)	M01		Reported: 04/28/06 14:11:50		
Department: 120 (Metals)				Sou	rce: MetEdi
Sample: CCV 5 (CCV)	Mult: 1.00	Dilf:	1.00	Divs:	1.000
Instrument: ICPMS M01	Channel 261				
File: 060426B1 # 46	Method 6020_				
Acquired: 04/26/2006 19:26:01	M01				
Calibrated: 04/26/2006 16:42:19			Units: ug/L		

CASN	Analyte Name	M/S	Area	Found	True	%R	Q
7440-41-7	Bervilium	9	26344	100.65	100.00	101	
	Aluminum	27	23199079	5152.2	5100.0	101	
7440-62-2	Vanadium	51	1000414	101.42	100.00	101	
7440-47-3	Chromium	52	951108	100.76	100.00	101	
7439-89-6	Iron	54	3628061	5123.4	5100.0	. 100	
7439-89-6	Iron	57	1475119	5103.6	5100.0	100	
7439-96-5	Manganese	55	1398372	101.05	100.00	101	
7440-48-4	_	59	1048746	99.793	100.00	99.8	
7440-02-0	Nickel	60	220162	99.699	100.00	99.7	
7440-50-8	Copper	65	199763	99.459	100.00	99.5	
7440-66-6	Zinc	68	73375	100.09	100.00	100	
7440-38-2	Arsenic	75	197523	100.62	100.00	101	
7782-49-2	Selenium	82	16479	99.387	100.00	99.4	
7439-98-7	Molybdenum	97	286585	201.93	200.00	101	
7440-22-4	Silver	107	339742	50.378	50.000	101	
7440-43-9	Cadmium	111	143084	100.30	100.00	100	
7440-36-0	Antimony	121	223092	50.468	50.000	101	
7440-39-3	Barium	135	127598	100.40	100.00	100	
7440-28-0	Thallium	205	584400	49,836	50.000	99.7	
7439-92-1	Lead	208	1536207	99,954	100.00	100	
CASN	ISTD Name	M/S	Area	Amount			Q
LITHIUM6	Lithium-6	6	936265				
7440-56-4	Germanium	72	1539522				\square
7440-74-6	Indium	115	1324326				\square
7440-30-4	Thulium	169	907563				☑

		Reviewed by:	Date:
		and the second s	Andrew Commencer
IDD Door	do	Severo Trent Laboratories	Version: 6 02.068

View Page 15 of 50

CALIBRATION REPORT

Method: 6020 (SOP: SAC-MT-001	М	01		Reported: 04/28/06 14:1				
Department: 120 (Metals)						Sc	ource: M	etEd
Sample: CCV 6 (CCV)		Mult	1.00	Dilf:	1.00	Divs:	1.0	00
Instrument: ICPMS M01		Channe	l 261					
File: 060426B1 # 48		Method (6020_					
Acquired: 04/26/2006 19:34:42		MO:	1					
Calibrated: 04/26/2006 16:42:19						Units: ug/	L	
CASN Analyte Name	M/S	Area	Found		Τ	rue	%R	C

CASN	Analyte Name	M/S	Area	Found	True	%R	Q
7440-41-7	Beryllium	9	25977	99.867	100.00	99.9	
	A!uminum	27	22979114	5172.7	5100.0	101	
7440-62-2	Vanadium	51	991030	101.82	100.00	102	
7440-47-3	Chromium	52	942666	101.24	100.00	101	
7439-89-6	Iron	54	3600977	5155.3	5100.0	101	
7439-89-6	Iron	57	1462460	5128.8	5100.0	101-	
7439-96-5	Manganese	55	1391971	101.95	100.00	102	
7440-48-4		59	1033341	99.662	100.00	99.7	
7440-02-0	Nickel	60	215100	98.725	100.00	98.7	
7440-50-8	Copper	65	196609	99.220	100.00	99.2	
7440-66-6		68	72876	100.77	100.00	101	
7440-38-2	Arsenic	75	194460	100.38	100.00	100-	
7782-49-2	Selenium	82	16229	99.205	100.00	99.2	
7439-98-7	Molybdenum	97	281876	201.29	200.00	101	
7440-22-4	Silver	107	336556	50.439	50.000	101	
7440-43-9	Cadmium	111	142115	100.68	100.00	101	
7440-36-0	Antimony	121	224155	51.249	50.000	102	
7440-39-3	Barium	135	126229	100.38	100.00	100	
7440-28-0	Thallium	205	577445	49,946	50.000	99.9	
7439-92-1	Lead	208	1522707	100.49	100.00	100	
CASN	ISTD Name	M/S	Area	Amount			Q
LITHIUM6	Lithium-6	6	930487				\square
7440-56-4	Germanium	72	1518905				abla
7440-74-6	Indium	115	1310384				\checkmark
7440-30-4	Thulium	169	894748				\square

Reviewed by: Date:

IDB Reports Severn Trent Laboratories Version: 6.02.068

View Page 17 of 50

CALIBRATION REPORT

Method: 6020 (SOP: SAC-MT-001)	M01		Reported: 04/28/06 14:1		
Department: 120 (Metals)				Source: MetEdi	
Sample: CCV 7 (CCV)	Mult: 1.00	Dilf:	1.00	Divs:	1.000
Instrument: ICPMS M01	Channel 261				
File: 060426B1 # 57	Method 6020_				
Acquired: 04/26/2006 20:13:31	M01				
Calibrated: 04/26/2006 16:42:19				Units: ug/L	

CASN	Analyte Name	M/S	Area	Found	True	%R	Q
7440-41-7	Bervilium	9	26878	99.222	100.00	99.2	
	Aluminum	27	23389841	5446.1	5100.0	107 🕤	
	Vanadium	51	952712	101 24	100.00	101	
	Chromium	52	904947	100.48	100.00	100	
7439-89-6		54	3458467	5119.4	5100.0	100	
7439-89-6		57	1381966	5010.1	5100.0	98.2	
7439-96-5	Manganese	55	1345399	101.90	100.00	102	
7440-48-4	-	59	990674	98.809	100.00	98.8	
7440-02-0	Nickel	60	205204	97.405	100.00	97.4	
7440-50-8	Copper	65	187407	97.808	100.00	97.8	
7440-66-6		68	69726	99.684	100.00	99.7	
7440-38-2	Arsenic	75	187021	99.792	100.00	99.8	
7782-49-2	Selenium	82	15895	100.51	100.00	101	
7439-98-7	Molybdenum	97	278031	205.32	200.00	103	
7440-22-4	•	107	331636	49.898	50.000	99.8	
7440-43-9	Cadmium	111	140104	99.649	100.00	99.6	
7440-36-0	Antimony	1 21	223511	51.305	50.000	103	
7440-39-3	Barium	135	124831	99.66 6	100.00	99.7	
7440-28-0	Thallium	205	576845	50.623	50.000	101	
7439-92-1	Lead	208	1506982	100.91	100.00	101	
CASN	ISTD Name	M/S	Area	Amount			Q
LITHIUM6	Lithium-6	6	989033				
	Germanium	72	1468820				
7440-74-6	Indium	115	1805167				
7440-30-4	Thulium	169	88188				☑

r			
	Reviewed by:	Date:	
IDB Reports	Sevem Trent Laboratories	Version: 6.02.	068

View Page 19 of 50

CALIBRATION REPORT

STL Sacramento	 			CA	LIBRA	HON F	KEPO	H
Method: 6020 (SOP: SAC-MT-001)	Mo)1		Reporte	d: 04/28/0	6 14:11	1:50
Department: 120 (Metals)						So	urce: Me	∍tEdit
Sample: CCV 8 (CCV)		Muit:	1.00	Dilf:	1.00	Divs:	1.00)0
Instrument: ICPMS M01		Channel	261			•		
File: 060426B1 # 59		Method 6	_					
Acquired: 04/26/2006 20:22:16		M01						
Calibrated: 04/26/2006 16:42:19						Jnits: ug/L		
CASN Analyte Name	M/S	Area	Found		Т	rue	%R	Q
7440-41-7 Beryllium	9	26452	97.878		100	.00	97.9	
7429-90-5 Aluminum	27	23433076	5329.0		510	0.0	104	
7440-62-2 Vanadium	51	981104	101.82		100	.00	102	
7440-47-3 Chromium	52	925435	100.37		100		100	
7439-89-6 Iron	54	3519395	5088.1		510		99.8	
7439-89-6 Iron	57	1431285	5069.9	_	510		99.4	
7439-96-5 Manganese	55	1374641	101.71		100		102 🕶	-
7440-48-4 Cobalt	59	1012074	98.607		100		98.6	
7440-02-0 Nickel	60	209768 🗻	97.285		100		97.3	
7440-50-8 Copper	65	191654	97.709		100		97.7	
7440-66-6 Zinc	68	71746	100.21		100		100	
7440-38-2 Arsenic	75	191538	99.841		100		99.8	
7782-49-2 Selenium	82	16193	100.01		100	.00	100	
7439-98-7 Molybdenum	97	280768	202.55		200	.00	101	
7440-22-4 Silver	107	333733	50.561		50.	000	101	
7440-43-9 Cadmium	111	141280	101.19		100	.00	101	
7440-36-0 Antimony	121	221935	51.294		50.	000	103	
7440-39-3 Barium	135	125889	101.20		100	.00	101	
7440-28-0 Thallium	205	573137	49.832		50.	000	99.7	
7439-92-1 Lead	208	1503625	100.09		100	.00	100	
CASN ISTD Name	M/S	Area	Amount	,				Q
LITHIUM6 Lithium-6	6	9866C5 🗝						V
7440-56-4 Germanium	72	1503544						✓
7440-74-6 Indium	115	1296258						₹
7440-30-4 Thulium	169	890114						⊽

	ALLEGATION OF THE PROPERTY OF	
	Reviewed by:	Date:
Name of the state	agyl, day publish i blackside.	J
IDB Reports	Severn Trent Laboratories	Version: 6.02.068

View Page 21 of 50

CALIBRATION REPORT

Method: 6020 (SOP: SAC-MT-001)	M01	M01 Reported: 04			3 14:11:50	
Department: 120 (Metals)				Source: MetEd		
Sample: CCV 9 (CCV)	Mult: 1.00	Dilf:	1.00	Divs:	1.000	
Instrument: ICPMS M01	Channel 261					
File: 060426B1 # 68	Method 6020_					
Acquired: 04/26/2006 21:01:16	M01					
Calibrated: 04/26/2006 16:42:19						
CASN Angleto Namo M/S	Area Found		Т	rue	%B 0	

CASN	Analyte Name	M/S	Area	Found	True	%R	Q
7440-41-7	Beryllium	9	26501	97.46 8	100.00	97.5~	
	Aluminum	27	24205986	5081.7	5100.0	99.6	
7440-62-2	Vanadium	51	1025722	98.398	100.00	98.4	
7440-47-3	Chromium	52	980827	98.128	100.00	98.1	
7439-89-6		54	3769138	5029.3	5100.0	98.6	
7439-89-6	iron	57	1543454	5047.0	5100.0	99.0	
7439-96-5	Manganese	55	1457581	99.662	100.00	99.6	
7440-48-4	-	59	1089751	98.020	100.00	98.0	
7440-02-0	Nickel	60	228529	97.823	100.00	97.8	
7440-50-8	Copper	65	209098	98.415	100.00	98.4	
7440-66-6	Zinc	68	77398	99.799	100.00	99.8	
7440-38-2	Arsenic	75	206866	99.535	100.00	99.5	
7782-49-2	Selenium	82	17298	98.596	100.00	98.6	
7439-98-7	Molybdenum	97	296618	197.56	200.00	98.8	
7440-22-4	Silver	107	351805	50.529	50.000	101	
7440-43-9	Cadmium	111	148981	101.17	100.00	101	
7440-36-0	Antimony	121	233130	51.086	50.000	102	
7440-39-3	Barium	135	133955	102.09	100.00	102	
7440-28-0	Thallium	205	604152	49.642	50.000	99.3	
7439-92-1	Lead	208	1591425	99.773	100.00	99.8	
CASN	ISTD Name	M/S	Area	Amount			Q
LITHIUM6	Lithium-6	6	972501				abla
7440-56-4	Germanium	72	1628497				
7440-74-6	Indium	115	1367230				\checkmark
7440-30-4	Thulium	169	941834				\square

·		
	Reviewed by:	Date:
1DB Reports	Severn Trent Laboratories	Version: 6.02.068

View Page 23 of 50

CALIBRATION REPORT

 Method: 6020 (SOP: SAC-MT-001)
 M01
 Reported: 04/28/06 14:11:50

 Department: 120 (Metals)
 Source: MetEdit

 Sample: CCV 10 (CCV)
 Mult: 1.00 Dilf: 1.00 Divs: 1.000

Instrument: ICPMS M01 Channel 261
File: 060426B1 # 70 Method 6020_
Acquired: 04/26/2006 21:09:57 M01
Calibrated: 04/26/2006 16:42:19

Units: ug/L

1,							
CASN	Analyte Name	M/S	Area	Found	True	%R	Q
7440-41-7		9	26829	100.99	100.00	101	
	Aluminum	27	24081113	5171.1	5100.0	101	
7440-62-2	Vanadium	51	1012473	99.396	100.00	99.4	
7440-47-3	Chromium	52	963820	98.733	100.00	98.7	
7439-89-6	Iron	54	3711693	5071.0	5100.0	99.4	
7439-89-6	Iron	57	1512359	5063.0	5100.0	99.3	
7439-96-5	Manganese	5 5	1438613	100.60	100.00	101	
7440-48-4	Cobalt	59	1070913	98.610	100.00	98.6	
7440-02-0	Nickel	60	225243	98.706	100.00	98.7	
7440-50-8	Copper	65	205494	99.015	100.00	99.0	
7440-66-6	• •	68	76087	100.44	100.00	100	
7440-38-2		75	203815	100.46	100.00	100	
7782-49-2	Selenium	82	17276	100.86	100.00	101	
7439-98-7	Molybdenum	97	292739	199.59	200.00	99.8	
7440-22-4	•	107	346282	50.331	50.000	101***	
7440-43-9	Cadmium	111	146832	98.001	100.00	101	
7440-36-0	Antimony	121	230847	51.185	50.000	102	
7440-39-3	Barium	135	129768	100.07	100.00	100	
7440-28-0	Thallium	205	594392	50.001	50.000	100	
7439-92-1	Lead	208	1564932	100.45	100.00	100	
CASN	ISTD Name	M/S	Area	Amount			Q
LITHIUM6	Lithium-6	6	850334				\square
	Germanium	72	1590877				☑
7440-74-6		115	1351158				\square
7440-30-4		169	920074				\square

	A STATE OF THE STA	
	Reviewed by:	Date:
IDB Reports	Severn Trent Laboratories	Version: 6,02,068

View Page 25 of 50

CALIBRATION REPORT

Method: 6020 (SOP: SAC-MT-001)	M01	Reported: 04/28/06 14:11:50				
Department: 120 (Metals)				Sou	rce: MetEd	
Sample: CCV 11 (CCV)	Mult: 1.00	Dilf:	1.00	Divs:	1.000	
Instrument: ICPMS M01	Channel 261					
File: 060426B1 # 80	Method 6020_					
Acquired: 04/26/2006 21:53:26	M01					
Calibrated: 04/26/2006 16:42:19				Units: ug/L		

CASN	Analyte Name	M/S	Area	Found	True	%R	Q
7440-41-7	Beryllium	9	26667	97.393*	100.00	97.4 -	
	Aluminum	27	24485872	5053.1	5100.0	99.1	
7440-62-2	Vanadium	51	1029759	97.155	100.00	97.2	
7440-47-3	Chromium	52	984334	96.749	100.00	96.7	
7439-89-6	Iron	54	3801301	4984.5	5100.0	97.7	
7439-89-6	Iron	57	1549573	4980.0	5100.0	97.6	
7439-96-5	Manganese	55	1463930	98.295	100.00	98.3	
7440-48-4	Cobalt	59	1097857	97.072	100.00	97.1	
7440-02-0	Nickel	60	229604	96.815	100.00	96.6	
7440-50-8	Copper	65	211456	97.829	100.00	97.8	
7440-66-6	Zinc	68	77990	98.829	100.00	98.8	
7440-38-2	Arsenic	75	209815	99.200	100.00	99.2	
7782-49-2	Selenium	82	17626	98.777	100.00	98.8	
7439-98-7	Molybdenum	97	296651	194.22	200.00	97.1	
7440-22-4	Silver	107	355971	50.128	50.000	100	
7440-43-9	Cadmium	111	149736	99.683	100.00	99.7	
7440-36-0	Antimony	121	234936	50.473	50.000	101	
7440-39-3	Barium	135	133294	99.599	100.00	99.6	
7440-28-0	Thaliium	205	604026	48.914	50.000	97.8	
7439-92-1	Lead	208	1606731	99.276	100.00	99.3	
CASN	ISTD Name	M/S	Area	Amount			Q
LITHIUM6	Lithium-6	6	979339				\square
7440-56-4	Germanium	72	1656703				\square
7440-74-6	Indium	115	1394595				
7440-30-4	Thulium	169	955665				\square

)
	Reviewed by:	Date:
IDB Reports	Severn Trent Laboratories	Version: 6.02.068

View Page 27 of 50

BLANK REPORT

Method: 6020 (SOP: SAC-MT-001)		M01			Reported: 04/28/06 14:11:			14:11:50
Department: 120 (Metals)							Source	e: MetEd
Sample: ICB		Mult:	1.00	Dilf:	1.00) D	ivs:	1.000
Instrument: ICPMS M01		Channel	261					
File: 060426B1 # 12		Method 6	020_					
Acquired: 04/26/2006 16:55:25 /		M01						
Calibrated: 04/26/2006 16:42:19						Units	: ug/L	
CASN Analyte Name	M/S	Area	Amount		RL	MDL	%RSE) C

CASN	Analyte Name	M/S	Area	Amount	RL	MDL	%RSD	Q
7440-41-7	Beryllium	9	2	0.00239	1.0	0.078	0.0	Ø
7429-90-5	•	27	40620	-0.86150	50.0	2.1	0.0	₫
	Vanadium	51	-24592	0.89436	10.0	3.1	0.0	☑
	Chromium	52	36147	0.11051	2.0	0.92	0.0	
7439-89-6		54	102076	-0.65557	50.0	17.0	0.0	abla
7439-89-6		57	20981	-1.3558	50.0	17.0	0.0	
	Manganese	55	2564	-0.01117	1.0	0.083	0.0	\square
7440-48-4	· ·	59	101	0.00304	1.0	0.057	0.0	
7440-02-0		60	116	-0.01206 *	2.0	0.098	0.0	
7440-50-8		65	150	0.00003				
7440-66-6	• •	68	1105	-0.38226	5.0	1.0	0.0	\square
7440-38-2		75	15290	-0.28118	2.0	0.50	0.0	\square
7782-49-2		82	400	0.07086	2.0	1.7	0.0	\square
	Molybdenum	97	400	0.27046				
7440-22-4	•	107	177	0.01842	1.0	0.030	0.0	$ \overline{\mathbf{V}} $
7440-43-9	Cadmium	111	13	0.00420	1.0	0.074	0.0	\mathbf{M}
	Antimony	121	115	0.01134	2.0	0.036	0.0	☑
7440-39-3		135	268	0.00957	1.0	0.96	0.0	
7440-28-0		205	2359	0.20539	1.0	0.34	0.0	Ø
7439-92-1	Lead	208	1165	0.01705	1.0	0.066	0.0	☑
CASN	ISTD Name	M/S	Area	Amount				Q
LITHIUM6	Lithium-6	6	956541					
7440-56-4	Germanium	72	1512870					\square
7440-74-6	Indium	115	1330779					$\overline{\mathbf{Q}}$
7440-30-4	Thulium	169	869132					abla

,			
İ	Reviewed by:	Date:	j
1	1DB Reports Sevem Trent Laboratories		on: 6.02.068

View Page 4 of 50

Method: 6020 (SOP: SAC-M	T-001)	N	ИО1		Rep	orted: 04	1/28/06 1	4:11:50
Department: 120 (Metals)			·				Source	: MetEdit
Sample: CCB 1		Mu	lt: 1.00	Dilf:	1.0	10 D	ivs:	1.000
Instrument: ICPMS M01		Chann	nel 261					
File: 060426B1 # 19	. *	Method	6020_					
Acquired: 04/26/2006 17:29	:04 ″	M	01					
Calibrated: 04/26/2006 16:4	2:19					Units ——	: ug/L	
CASN Analyte Name	M/S	Area	Amount		RL	MDL	%RSD	Q
7440-41-7 Beryllium	9	2	0.00255		1.0	0.078	0.0	
7429-90-5 Aluminum	27	41078	-0.72884		50.0	2.1	0.0	
7440-62-2 Vanadium	51	-22637	1.0826		10.0	3.1	0.0	
7440-47-3 Chromium	52	31782	-0.36684		2.0	0.92	0.0	
7439-89-6 Iron	54	100145	-3.0354		50.0	17.0	0.0	
7439-89-6 Iron	57	20836	-1.6357		50.0	17.0	0.0	
7439-96-5 Manganese	55	2460	-0.01832		1.0	0.083	0.0	₽
7440-48-4 Cobalt	59	111	0.00408 🕶	er.	1.0	0.057	0.0	V
7440-02-0 Nickel	60	128	-0.00633		2.0	0.098	0.0	[₩
7440-50-8 Copper	65	147	-0.00100					_
7440-66-6 Zinc	68	1051	-0.45422		5.0	1.0	0.0	
7440-38-2 Arsenic	75	15782	0.02514		2.0	0.50	0.0	
7782-49-2 Selenium	82	381	-0.03979		2.0	1.7	0.0	2
7439-98-7 Molybdenum	97	887	0.62237					_
7440-22-4 Silver	107	181	0.01892		1.0	0.030	0.0	
7440-43-9 Cadmium	111	16	0.00617		1.0	0.074	0.0	
7440-36-0 Antimony	121	211	0.03271		2.0	0.036	0.0	
7440-39-3 Barium	135	252	-0.00404		1.0	0.96	0.0	
7440-28-0 Thallium	205	2187	0.18740		1.0	0.34	0.0	
7439-92-1 Lead	208	1299	0.02492		1.0	0.066	0.0	
CASN ISTD Name	M/S	Area	Amount					Q
LITHIUM6 Lithium-6	6	941673						<u>√</u>
	70	4.0000000						ls.

72

115

169

7440-56-4 Germanium

7440-74-6 Indium

7440-30-4 Thulium

1508057

1337827

881758

	Reviewed by:	Date:
IDB Reports	Sevem Tront Laboratories	Version: 6.02.068

View Page 8 of 50

 \square

BLANK REPORT

Method: 6020 (SOP: SAC-MT-001)		М	01		Repo	rted: 04	/28/06	14:11:50
Department: 120 (Metals)					, <u> </u>		Source	e: MetEd
Sample: CCB 2		Muli	1.00	Dilf:	1.00	D	îvs:	1.000
Instrument: ICPMS M01		Channe	el 261					
File: 060426B1 # 21		Method	6020_					
Acquired: 04/26/2006 17:37:45		MO1						
Calibrated: 04/26/2006 16:42:19						Units	: ug/L	
CASN Analyte Name	M/S	Area	Amount		RL	MDL	%RSE) (

CASN	Analyte Name	M/S	Area	Amount	RL	MDL	%RSD	Q
7440-41-7	Bervllium	9	2	0.00263	1.0	0.078	0.0	V
	Aluminum	27	41026	-0.82113	50.0	2.1	0.0	.✓
	Vanadium	51	-23579	1.0085	10.0	3.1	0.0	\square
	Chromium	52	32040	-0.36965	2.0	0.92	0.0	Ø
7439-89-6		54	101721	-2.0286	50.0	17.0	0.0	☑
7439-89-6		57	20897	~2.0652	50.0	17.0	0.0	Ø
7439-96-5	Manganese	55	2519	-0.01558	1.0	0.083	0.0	☑
7440-48-4		59	146	0.00739	1.0	0.057	0.0	\square
7440-02-0	Nickel	60	143	-0.00004	2.0	0.098	0.0	\Box
7440-50-8	Copper	65	151	0.00030				_
7440-66-6	Zinc	68	1027	-0.50067	5.0	1.0	0.0	☑
7440-38-2	Arsenic	75	15989	0.06532	2.0	0.50	0.0	oxdot
7782-49-2	Selenium	82	384	-0.04546	2.0	1.7	0.0	
7439-98-7	Molybdenum	97	871	0.60639				
7440-22-4	Silver	107	216	0.02388	1.0	0.030	0.0	Ø
7440-43-9	Cadmium	111	16	0.00577	1.0	0.074	0.0	☑
7440-36-0	Antimony	121	240	0.03884	2.0	0.036	0.0	
7440-39-3	Barium	135	278	0.01525	1.0	0.96	0.0	Ø
7440-28-0	Thallium	205	2387	0.20371	1.0	0.34	0.0	Ø
7439-92-1	Lead	208	1348	0.02753	1.0	0.066	0.0	
CASN	ISTD Name	M/S	Area	Amount				Q
LITHIUM6	Lithium-6	6	937984					
7440-56-4	Germanium	72	1521675					☑
7440-74-6	Indium	115	1844833					☑
7440-30-4	Thulium	169	887672					\square

	and the same of th		
	Reviewed by:	Date:	
IDR Garage	Sevem Trent Laboratories	Version: 6.02.068	

View Page 10 of 50

BLANK REPORT

Method: 6020 (SOP: SAC-MT-001)	M01	Reported: 04/28/06 14:11:50				
Department: 120 (Metals)				Sou	rce: MetEdit	
Sample: CCB 3	Mult: 1.00	Dilf:	1.00	Divs:	1.000	
Instrument: ICPMS M01	Channel 261					
File: 060426B1 # 33	Method 6020_					
Acquired: 04/26/2006 18:29:27	M01					
Calibrated: 04/26/2006 16:42:19				Units: ug/L		

CASN	Analyte Name	M/S	Area	Amount	RL	MDL	%RSD	Q
7440-41-7		9	5	0.01100	1.0	0.078	0.0	\square
	Aluminum	27	42624	-0.56766	50.0	2.1	0.0	
7440-62-2	Vanadium	51	-23461	1.0461	10.0	3.1	0.0	abla
7440-47-3	Chromium	52	36778	0.11267	2.0	0.92	0.0	
7439-89-6	Iron	54	104407	0.22840	50.0	17.0	0.0	☑
7439-89-6	Iron	57	20947	-2,7270	50.0	17.0	0.0	☑
7439-96-5	Manganese	55	2787	0.00181	1.0	0.083	0.0	abla
7440-48-4	-	59	170	0.00948	1.0	0.057	0.0	oxdot
7440-02-0	Nickel	60	139	-0.00265	2.0	0.098	0.0	\square
7440-50-8	Copper	65	135	-0.00845				
7440-66-6	Zinc	68	1117	-0.39144	5.0	1.0	0.0	\mathbf{Z}
7440-38-2	Arsenic	75	15743	-0.17224	2.0	0.50	0.0	☑
7782-49-2	Selenium	82	386	-0.05536	2.0	1.7	0.0	\square
7439-98-7	Molybdenum	97	793	0.54370				
7440-22-4	Silver	107	258	0.03028	1.0	0.030	0.0	Ճ
7440-43-9	Cadmium	111	20	0.00881	1.0	0.074	0.0	oxdot
7440-36-0	Antimony	121	490	0.09540	2.0	0.036	0.0	⊴
7440-39-3	Barium	135	261	0.00345	1.0	0.96	0.0	☑
7440-28-0	Thallium	205	1986	0.16557	1.0	0.34	0.0	☑
7439-92-1	Lead	208	1501	0.03607	1.0	0,066	0.0	☑
CASN	ISTD Name	M/S	Area	Amount			···	Q
LITHIUM6	Lithium-6	6	966231					\square
7440-56-4	Germanium	72	1538417					☑
7440-74-6	Indium	115	1335324					\square
7440-30-4	Thulium	169	860808					☑

		1
	Reviewed by:	Date:
<u> </u>		
IDB Reports	Severn Trent Laboratories	Version; 6.02.068

View Page 12 of 50

BLANK REPORT

Sample: CCB 4	Mult:	1.00	Dilf:	1.00	Divs:	1.000
Department: 120 (Metals)			D.116	4.00		rce: MetEdit
Method: 6020 (SOP: SAC-MT-001)	M01			Hepone		5 14:11:50

Sample, CCB 4	With 1100 Dilli	
Instrument: ICPMS M01	Channel 261	
File: 060426B1 # 35	Method 6020_	
Acquired: 04/26/2006 18:38:09	M01	
Calibrated: 04/26/2006 16:42:19		Units: ug/L

CASN	Analyte Name	M/S	Area	Amount	RLRL	MDL	%RSD	Q
7440-41-7	Bervilium	9	3	0.00620	1.0	0.078	0.0	\square
7429-90-5	•	27	42684	0.55274	50.0	2.1	0.0	
7440-62-2		51	-24150	0.97567	10.0	3.1	0.0	\square
7440-47-3	Chromium	52	35414	-0.03679	2.0	0.92	0.0	lacksquare
7439-89-6	Iron	54	104384	0.22177	50.0	17.0	0.0	$\overline{\mathbf{V}}$
7439-89-6	Iron	57	21588	-0.45261	50.0	17.0	0.0	
7439-96-5	Manganese	55	2805	0.00318	1.0	0.083	0.0	\square
7440-48-4	-	59	188	0.01118	1,0	0. 057	0.0	\square
7440-02-0	Nickel	60	126	-0.00848	2.0	0.098	0.0	M
7440-50-8	Copper	65	146	-0.00316				
7440-66-6	Zinc	68	1071	0.45476	5.0	1.0	0.0	◩
7440-38-2	Arsenic	75	15625	-0.23811	2.0	0.50	0.0	\square
7782-49-2	Selenium	82	400	0.03038	2.0	1.7	0.0	\square
7439-98-7	Molybdenum	97	865	0.59459				_
7440-22-4	Silver	107	271	0.03210	1.0	0.030	0.0	☑
7440-43-9	Cadmium	111	20	0.00890	1.0	0.074	0.0	☑
7440-36-0	Antimony	121	428	0.08139	2.0	0.036	0.0	$\overline{\square}$
7440-39-3	Barium	135	260	0.00193	1.0	0.96	0.0	$\overline{\square}$
7440-28-0	Thallium	205	2308	0.19154	1.0	0.34	0.0	☒
7439-92-1	Lead	208	1595	0.04143	1.0	0.066	0.0	\square
CASN	ISTD Name	M/S	Area	Amount				Q
LITHIUM6	Lithium-6	6	950370					\square
7440-56-4	Germanium	72	1538252					☑
7440-74-6	Indium	115	1339819					Ø
7440-30-4	Thulium	169	909885					\Box

٠,				
	•	Reviewed by.	Date:	
l	IDB Reports	Severn Trent Laboratories	Version: 6.02.068	

View Page 14 of 50

BLANK REPORT

Method: 6020 (SOP: SAC-MT-001)	Mot	Reported: 04/28/06 14:11:50			
Department: 120 (Metals)				Sou	rce: MetEdit
Sample: CCB 5	Mult: 1.00	Dilf:	1.00	Divs:	1.000
Instrument: ICPMS M01	Channel 261				
File: 060426B1 # 47	Method 6020_				
Acquired: 04/26/2006 19:30:22	M01				
Calibrated: 04/26/2006 16:42:19			Units: ug/L		

CASN	Analyte Name	M/S	Area	Amount	RL	MDL	%RSD	Q
		9	3	0.00595	1.0	0.078	0.0	<u>.</u>
7440-41-7	•	27	42489	-0.60630	50.0	2.1	0.0	$\overline{\square}$
•	Aluminum		-21707	1.2236	10.0	3.1	0.0	
	Vanadium	51			2.0	0.92	0.0	Ø
	Chromium	52	34501	-0.14213	50.0	17.0	0.0	☑
7439-89 - 6		54	103960	-0.55040			0.0	☑
7439-89-6	Iron	57	21513	-0.79676	50.0	17.0		
7439-96-5	Manganese	55	2946	0.01326	1.0	0.083	0.0	
7440-48-4	Cobalt	59	193	0.01163	1.0	0.057	0.0	Ø
7440-02-0	Nickel	60	139	-0.00248	2.0	0.098	0.0	\square
7440-50-8	Copper	65	161	0.00447				_
7440-66-6		68	1081	-0.44261	5.0	1.0	0.0	₫
7440-38-2	Arsenic	75	16329	0.14243	2.0	0.50	0.0	\square
7782-49-2	Selenium	82	368	-0.17537	2.0	1.7	0.0	\square
7439-98-7	Molybdenum	97	805	0.55018				
7440-22-4	<u> </u>	107	253	0.02944	1.0	0.030	0.0	\square
	Cadmium	111	24	0.01126	1.0	0.074	0.0	☑
	Antimony	121	300	0.05253	2.0	0.036	0.0	\square
7440-39-3	_	135	282	0.01975	1.0	0.96	0.0	
7440-28-0		205	1995	0.16512	1.0	0.34	0.0	\square
7439-92-1		208	1669	0.04657	1.0	0.066	0.0	$\overline{\mathbf{Q}}$
7-700 DE :	2000							^
CASN	ISTD Name	M/S	Area	Amount	····			<u>Q</u>
LITHIUM6	Lithium-6	6	957514					Ø
7440-56-4	Germanium	72	1540484					豆
7440-74-6		115	1337663					☑
7440-30-4	Thulium	169	907652					☑

Reviewed by: Date:

IDB Reports Severn Trent Laboratories Version: 6.02.068

View Page 16 of 50

BLANK REPORT

Method: 6020 (SOP: SAC-MT-001)		M01			Reported: 04/28/06 14:11:5			
Department: 120 (Metals) Sample: CCB 6	Mul	t: 1.00	Dilf:	1.00) D	Sourc	e: MetEd 1.000	
Instrument: ICPMS M01 File: 060426B1 # 49 Acquired: 04/26/2006 19:39:03 Calibrated: 04/26/2006 16:42:19		Channe Method M0	6020_			Units	s: ug/L	
CASN Analyte Name	M/S	Area	Amount		RL_	MDL	%RSI) (

·								
CASN	Analyte Name	M/S	Area	Amount	RL	MDL	%RSD	Q
7440-41-7		9	4	0.01019	1.0	0.078	0.0	☑
	Aluminum	27	42059	-0.66660	50.0	2.1	0.0	\square
	Vanadium	51	-21867	1.1967	10.0	3.1	0.0	
	Chromium	52	34448	-0.13307	2.0	0.92	0.0	\square
7439-89-6		54	103554	-0.5 93 96	50.0	17.0	0.0	☑
7439-89-6		57	21291	-1.3056	50.0	17.0	0.0	\square
	Manganese	55	2982	0.01645	1.0	0.083	0.0	\square
7440-48-4	· ·	59	237	0.01590	1.0	0.057	0.0	
7440-02-0	Nickel	60	148	0.00173	2.0	0.098	0.0	Ø
7440-50-8	Copper	65	133	-0.00946				
7440-66-6		68	1100	-0.40987	5.0	1.0	0.0	☑
7440-38-2	Arsenic	75	15918	-0.05022	2.0	0.50	0.0	
7782-49-2	Selenium	82	377	-0.11038	2.0	1.7	0.0	
7439-98-7	Molybdenum	97	849	0.58590				
7440-22-4		107	247	0.02861	1.0	0.030	0.0	$\overline{\checkmark}$
7440-43-9	Cadmium	111	33	0.01789	1.0	0.074	0.0	
7440-36-0	Antimony	121	341	0.06188	2.0	0.036		丞
7440-39-3	Barium	135	289	0.02579	1.0	0.96	0.0	Ø
7440-28-0	Thallium	205	2236	0.18850	1.0	0.34	0.0	\square
7439-92-1	Lead	208	1723	0.05152	1.0	0.066	0.0	⋈
CASN	ISTD Name	M/S	Area	Amount		. <u></u>		Q
LITHIUM6	Lithium-6	6	940761					☑
	Germanium	72	1534330					☑
7440-74-6	Indium	115	1335465					☑
7440-30-4	Thulium	169	895658					Ø

Reviewed by: Date:

1DB Reports Severn Trent Laboratories Version: 6.02.068

View Page 18 of 50

BLANK REPORT

STL Sacramento				t	3LAIN	IK HEI	JOHI	
Method: 6020 (SOP: SAC-MT-001	M01			Reported: 04/28/06 14:11:50				
Department: 120 (Metals)				•••			Source	: MetEdit
Sample: CCB 7		Mu	ult: 1.00	Dilf:	1.00	D D	ivs:	1.000
Instrument: ICPMS M01	Chanr	nel 261						
File: 060426B1 # 58	Method 6020_							
Acquired: 04/26/2006 20:17:55	M	01						
Calibrated: 04/26/2006 16:42:19					Units: ug/L			
CASN Analyte Name	M/S	Area	Amount		RL	MDL	%RSD	Q
7440-41-7 Beryllium	9	6	0.01567		1.0	0.078	0.0	☑
7429-90-5 Aluminum	27	43498	-0.04652		50.0	2.1	0.0	\square
7440-62-2 Vanadium	51	-23947	0.91921		10.0	3.1	0.0	团
7440-47-3 Chromium	52	33073	-0.17283		2.0	0.92	0.0	
7439-89-6 Iron	54	101089	0.36273		50.0	17.0	0.0	☑
7439-89-6 Iron	57	20403	-2.2142		50.0	17.0	0.0	
7439-96-5 Manganese	55	3262	0.04420		1.0	0.083	0.0	
7440 49 4 Cabalt	50	267	0.01957		1.0	0.057	0.0	ত

7439-89-6	iron	5/	20403	-2.2142	50.0	17.0	0.0	
7439-96-5	Manganese	55	3262	0.04420	1.0	0.083	0.0	
7440-48-4	Cobalt	59	267	0.01957	1.0	0.057	0.0	$oldsymbol{ abla}$
7440-02-0	Nickel	60	137	-0.00157	2.0	0.098	0.0	\checkmark
7440-50-8	Copper	65	158	0.00532				
7440-66-6	Zinc	68	1040	-0.44929	5.0	1.0	0.0	\square
7440-38-2	Arsenic	75	15578	0.02697	2.0	0.50	0.0	
7782-49-2	Selenium	82	353	-0.18979	2.0	1.7	0.0	\square
7439-98-7	Molybdenum	97	963	0.68527				
7440-22-4	Silver	107	387	0.05033	1.0	0.030	0.0	\square
7440-43-9	Cadmium	111	17	0,00660	1.0	0.074	0.0	M
7440-36-0	Antimony	121	925	0.19701	2.0	0.036	0.0	\square
7440-39-3	Barium	135	272	0.01632	1.0	0.96	0.0	
7440-28-0	Thallium	205	2133	0.18341	1.0	0.34	0.0	
7439-92-1	Lead	208	1980	0.07118)	1.0	0.066	0.0	☑
CASN	ISTD Name	M/S	Area	Amount				Q
LITHIUM6	Lithium-6	6	988753					
7440-56-4	Germanium	72	1488324					\square
7440-74-6	Indium	115	1310368					
7440-30-4	Thulium	169	277456					

De Hala

Reviewed by: Date:

IDB Reports Sevem Trent Laboratories Version: 6.02.068

View Page 20 of 50

BLANK REPORT

Method: 6020 (SOP: SAC-MT-001)	M01	Reported: 04/28/06 14:11:50				
Department: 120 (Metals)				Sou	rce: MetEd	
Sample: CCB 8	Mult: 1.00	Dilf:	1.00	Divs:	1.000	
Instrument: ICPMS M01	Channel 261					
File: 060426B1 # 60	Method 6020_					
Acquired: 04/26/2006 20:26:37	M01					
Calibrated: 04/26/2006 16:42:19		Units: ug/L				

CASN	Analyte Name	M/S	Area	Amount	RL	MDL	%RSD	Q
7440-41-7	Bervllium	9	6	0.01712	1.0	0.078	0.0	\square
	Aluminum	27	44523	-0.04178	50.0	2.1	0.0	\square
7440-62-2	Vanadium	51	-21454 -	1.2205	10.0	3.1	0.0	Ø
7440-47-3	Chromium	52	33685	~0.18941	2.0	0.92	0.0	Ø
7439-89-6	Iron	54	102495	-0.99774	50.0	17.0	0.0	\square
7439-89-6	Iron	57	20934	-2.0064	50.0	17.0	0.0	
7439-96-5	Manganese	55	3375	0.04692	1.0	0.083	0.0	\square
7440-48-4		59	287	0.02087	1.0	0.057	0.0	
7440-02-0	Nickel	60	148	0.00213	2.0	0.098	0.0	
7440-50-8	Copper	65	150	-0.00013				
7440-66-6	Zinc	68	1079	-0.42842	5.0	1.0	0.0	Ø
7440-38-2	Arsenic	75	15867	-0.01184	2.0	0.50	0.0	☑
7782-49-2	Selenium	82	384	-0.04866	2.0	1.7	0.0	\square
7439-98-7	Molybdenum	97	882	0.61242				
7440-22-4	Silver	107	353	(0.04469)	1.0	0.030	0.0	\square
7440-43-9	Cadmlum	111	32	0.01759	1.0	0.074	0.0	V
7440-36-0	Antimony	121	619	0.12544	2.0	0.036	0.0	☑
7440-39-3	Barium	135	267	0.01033	1.0	0.96	0.0	⊻
7440-28-0	Thallium	205	2374	0.20066	1.0	0.34	0.0	☑
7439-92-1	Lead	208	1980	F 0.06851	1.0	0.066	0.0	团
CASN	ISTD Name	M/S	Area	Amount	······			Q
LITHIUM6	Lithium-6	6	986606					$\overline{\mathbf{Q}}$
7440-56-4	Germanium	72	1822590					☑
7440-74-6	Indium	115	1324328					Ø
7440-30-4	Thulium	169	895091					\square

	Reviewed by:	Date:
· ·	riovioriou by:	
IOO Classeds	Sovom Trent Laboratories	Version: 6.02.068

View Page 22 of 50

7440-74-6 Indium

7440-30-4 Thulium

STL Sacramento						BLAN	<u>CREP</u>	ORT
Method: 6020 (SOP: SAC-MT-00	i)	1	M01			orted: 04/2	28/06 14	:11:50
Department: 120 (Metals)							Source:	MetEdit
Sample: CCB 9		М	ult: 1.00	Dilf:	1.0	Div	/s: 1	.000
Instrument: ICPMS M01		Chan	nel 261					
File: 060426B1 # 69			d 6020_					
Acquired: 04/26/2006 21:05:36			101					
Calibrated: 04/26/2006 16:42:19		101	.01			Unite	ua/l	
Calibrated: 04/20/2000 16.42.19					Units: ug/L			
CASN Analyte Name	M/S	Area	Amount		RL	MDL	%RSD	<u>Q</u>
7440-41-7 Beryllium	9	13	0.04287		1.0	0.078	0.0	Ø
7429-90-5 Aluminum	27	52389	0.94675		50.0	2.1	0.0	abla
7440-62-2 Vanadium	51	-21214	1.3841		10.0	3.1	0.0	☑
7440-47-3 Chromium	52	34742	-0.32728		2.0	0.92	0.0	✓
7439-89-6 Iron	54	109287	-1.6263		50.0	17.0	0.0	✓
7439-89-6 Iron	57	21941	-3.5693		50.0	17.0	0.0	✓
7439-96-5 Manganese	55	4023	0.07494		1.0	0.083	0.0	
7440-48-4 Cobalt	59	559	0.04352		1.0	0.057	0.0	☑
7440-02-0 Nickel	60	208	0.02345		2.0	0.098	0.0	
7440-50-8 Copper	65	206	0.02089					
7440-66-6 Zinc	68	1066	-0.54527		5.0	1.0	0.0	ゼ
7440-38-2 Arsenic	75	17947	0.48922		2.0	0.50	0.0	፟
7782-49-2 Selenium	82	431	0.06994		2.0	1.7	0.0	⊽
7439-98-7 Molybdenum	97	2082	1.3668					_
7440-22-4 Silver	107	560	(0.07173)		1.0	0.030	0.0	₹
7440-43-9 Cadmium	111	73	0.04380		1.0	0.074	0.0	፟
7440-36-0 Antimony	121	625	0.12082		2.0	0.036		☑
7440-39-3 Barium	135	316	0.03756		1.0	0.96	0.0	☑
7440-28-0 Thallium	205	5687	0.46571		1.0	0.34		☑
7439-92-1 Lead	208	2343	₹0.08583		1.0	0.066	0.0	☑
CASN ISTD Name	M/S	Area	Amount	-		<u></u>		Q
LiTHIUM6 Lithium-6	6	807175						☑
7440-56-4 Germanium	72	1630209						2
		A A SECTION OF STREET						1.7

115

169

1385463

935413

		1
ere e	Reviewed by:	Date:
<u> </u>		
ID9 Reports	Sevem Trent Laboratories	Version: 6.02.068

Page 24 of 50 View

 \square

BLANK REPORT

Method: 6020 (SOP: SAC-MT-001)	M01	Reported: 04/28/06 14:11:50				
Department: 120 (Metals)				Sou	rce: MetEdit	
Sample: CCB 10	Mult: 1.00	Dilf:	1.00	Dîvs:	1.000	
Instrument: ICPMS M01	Channel 261					
File: 060426B1 # 71	Method 6020_					
Acquired: 04/26/2006 21:14:18	MO1					

Acquired: 04/26/2006 21:14:18 Calibrated: 04/26/2006 16:42:19

Units: ug/L

CASN	Analyte Name	M/S	Area	Amount	RL	MDL	%RSD	Q
7440-41-7	Bervilium	9	23	<0.07801	1.0	0.078	0.0	\square
	Aluminum	27	58653	(2.2608) N/x	50. 0	2.1	0.0	☑
7440-62-2	Vanadium	51	-20974	1.4059	10.0	3.1	0.0	\square
7440-47-3	Chromium	52	35162	-0,28536	2.0	0.92	0.0	☑
7439-89-6	Iron	54	110976	0.62010	50.0	17.0	0.0	☑
7439-89-6	Iron	57	22268	-2.5251	50.0	17.0	0.0	\square
7439-96-5	Manganese	55	4418	(0.10182)	1.0	0.083	0.0	\square
7440-48-4	Cobait	59	880	0.07230	1.0	0.057	0.0	\square
7440-02-0	Nickel	60	287	0.05730	2.0	0.098	0.0	☑
7440-50-8	Copper	65	268	0.05026				
7440-66-6	Zinc	68	1120	-0.47549	5.0	1.0	0.0	\square
7440-38-2	Arsenic	75	17786	0.39967	2.0	0.50	0.0	\square
7782-49-2	Selenium	82	421	0.00719	2.0	1.7	0.0	\square
7439-98-7	Molybdenum	97	2273	1.4977				
7440-22-4	7	107	670	0.08789	1.0	0.030	0.0	\square
7440-43-9	Cadmium	111	110	0.06895	1.0	0.074	0.0	☑
7440-36-0	Antimony	121	716	0.14142	2.0	0.036		☑
7440-39-3	Barium	135	343	0.05974	1.0	0.96	0.0	\square
7440-28-0	Thallium	205	6849	0.56248	1.0	0.34	G 0.0	\square
7439-92-1	Lead .	208	2936	0.12356	1.0	0.066	0.0	Ø
CASN	ISTD Name	M/S	Area	Amount				Q
LITHIUM6	Lithium-6	6	973589					\square
	Germanium	72	1631140					☑
7440-74-6	Indium	115	1974994					☑
7440-30-4	Thulium	169	998744					Ø

	Reviewed by:	Date:
IDB Reports	Severn Trent Laboratories	Version: 6.02.068

View Page 26 of 50

BLANK REPORT

 Method: 6020 (SOP: SAC-MT-001)
 M01
 Reported: 04/28/06 14:11:50

 Department: 120 (Metals)
 Source: MetEdit

 Sample: CCB 11
 Mult: 1.00 Diff: 1.00 Divs: 1.000

 Instrument: ICPMS M01
 Channel 261

File: 060426B1 # 81 Acquired: 04/26/2006 21:57:47 Calibrated: 04/26/2006 16:42:19 Method 6020_ M01

Units: ug/L

CASN	Analyte Name	M/S	Area	Amount	RL	MDL.	%RSD	Q
7440-41-7	Bervllium	9	16	0.05354	1.0	0.078	0.0	ゼ
7429-90-5	•	27	60953	2.5735 NAT-	50.0	2.1	0.0	☑
7440-62-2	Vanadium	51	-23233	1.2258	10.0	3.1	0.0	☑
7440-47-3	Chromium	52	35479 *	-0.30035	2.0	0.92	0.0	
7439-89-6	Iron	54	111932	-0.07473	50.0	17.0	0.0	
7439-89-6	Iron	57	22258	-3.5179	50.0	17.0	0.0	
7439-96-5	Manganese	55	4780	, 0 .12230	1.0	0.083	0.0	☑
7440-48-4	_	59	994	0.08140	1.0	0.057	0.0	
7440-02-0	Nickel	60	305	0.06325	2.0	0.098	0.0	
7440-50-8	Copper	65	322	0.07347				
7440-66-6		68	1095	-0.52657	5.0	1.0	0.0	☑
7440-38-2	Arsenic	75	17791	0.28114	2.0	0.50	0.0	
7782-49-2	Selenium	82	444	0.10862	2.0	. 1.7	0.0	\Box
7439-98-7	Molybdenum	97	2229	1.4443				
7440-22-4	Silver	107	671	0.08757	1.0	0.030	0.0	$ \overline{\mathbf{v}} $
7440-43-9	Cadmium	111	125	0,07848	1.0	0.074	0.0	
7440-36-0	Antimony	121	680	0.13285	2.0	0.036	0.0	$ \overline{\mathcal{Q}} $
7440-39-3	Barium	135	368	0.07777	1.0	0.96	0.0	$\overline{\mathbf{v}}$
7440-28-0	Thallium	205	6217	0.50415 Mw	1.0	0.34	0.0	
7439-92-1	Lead	208	3051	(0.12884)	1.0	0.066	0.0	abla
CASN	ISTD Name	M/S	Area	Amount		,		Q
LITHIUM6	Lithium-6	6	977721					
7440-56-4	Germanium	72	1852645					☑
7440-74-6	Indium	115	1382655					\square
7440-30-4	Thulium	169	948531					\square

	Reviewed by:	Date:	
(<u> </u>			
IDB Réports	Sevem Trent Laboratories		Version; 6.02.068

View Page 28 of 50

CALIBRATION REPORT

Method: 6020 (SOP: SAC-MT-001)	MO1		Reported: 04/28/06 14:11:50			
Department: 120 (Metals)				Sou	rce: MetEdi	
Sample: ICSA	Mult: 1.00	Dilf:	1.00	Divs:	1.000	
Instrument: ICPMS M01	Channel 261					
File: 060426B1 # 13	Method 6020_					
Acquired: 04/26/2006 16:59:45	M01					
Calibrated: 04/26/2006 16:42:19		Units: ug/L				

С	ASN	Analyte Name	M/S	Area	Found	True	%R	Q
744	0-41-7	Bervilium	9	722/5011	0.04675		*	\square
		Aluminum	27	\$ 75442712	102565	100000	103***	\square
744	0-62-2	Vanadium	51	-16693	1.3432 🚣		*	\square
744	0-47-3	Chromium	52	39063	1.3415 🔏		*	\square
743	39-89-6	Iron	54	54788349	97686	100000	97.7	\square
743	39-89-6	Iron	57	22858073	98496	100000	98.5	abla
743	9-96-5	Manganese	55	27038	2.2041		*	
744	0-48-4	Cobalt	59	14432	1.6798-		*	
744	10-02-0	Nickel	60	4130	2.2342		*	
744	10-50-8	Copper	65	191	-0.19314 MA		*	_
744	10-66-6	Zinc	68	3573	4.1559,		*	Ø
744	10-38-2	Arsenic	75	13418	0.22787.		*	Ø
778	32-49-2	Selenium	82	399	0.58017 🚣		*	ୢ୕
743	39-98-7	Molybdenum	97	2341733	2026.4	2000.0	101 🐔	
744	10-22-4	Silver	107	1628	0.27914 🐃		*	\square
744	10-43-9	Cadmium	111	528	0.43313 🛩		∜ r	\square
744	10-36-0	Antimony	121	8073	2.1549		*	
744	10-39-3	Barium	135	1094	0.82461ፈ.		*	abla
744	40-28-0	Thallium	205	1350	0.12520 🕊		*	\square
743	39-92-1	Lead	208	14355	0.99179-		#	\square
C	CASN	ISTD Name	M/S	Area	Amount			Q
LIT	HIUM6	Lithium-6	6	763791				☑
744	40-56-4	Germanium	72	1253652				\square
744	40-74-6	Indium	115	1115150				\square
744	40-30-4	Thulium	169	804725		- 4 j.		\square

Franks and was 5%.

Franks and was 5%.

Control of Market 18 in Ingention

TEXT (TEXAL). No Ingention

5-154

Reviewed by: Date:

IDB Reports Severn Trent Laboratories Version: 6.02,068

View Page 5 of 50

STL SACRAMENTO - Perkin Elmer Elan 6000 ICPMS M01 - Method 6020 SOP No. SAC-MT-0001

BJones

Sample ID: ICSA

Sample Description:

Batch ID:

Sample Date/Time: Wednesday, April 26, 2006 16:59:45

Method File: C:\elandata\Method\6116313.mth

Dataset File: C:\elandata\Dataset\060426B1\ICSA.013

Tuning File: c:\elandata\Tuning\default.tun
Optimization File: c:\elandata\Optimize\default.dac

Autosampler Position: 2 Number of Replicates: 3 Dual Detector Mode: Dual Initial Sample Quantity (mg): Sample Prep Volume (mL): Aliquot Volume (mL): Diluted To Volume (mL):

Sample Result Summary

	Mass Analyte	e Conc. Mean	Conc. RSD	Meas, Intens, Mean	Sample Unit	Blank Intensity
	45 Sc			1593822.202	ug/L	2168057.900
Γ>	6 Li-1			763790.747	ug/L	944171.698
ĺ	9 Be	0.046755	30.492	<u> 11.333</u>	ug/L	1.667
ř		102564.529905	2.164	375442712.466	[™] ug/L	48727.972
í	44 Ca	95409.777840	0.961	19329604.274	ug/L	17922.675
ĺ	51 V	1.343234	50.024	-16692.522	ug/L	-36803.379
i	52 Cr	1.341547	3.719	39063.362	ug/L	38566.819
i	55 Mn	2.204092	0.489	27038.380	ug/L	2978.840
i	54 Fe	97685.625963	0.888	54788349.132	ug/L	112445.934
ĺ	57 Fe	98496.273913	0.422	22858072.599	ug/L	23429.769
j	59 Co	1.679791	0.803	14431.894	ug/L	76.000
j	60 Ni	2.234151	7.901	4130.015	ug/L	156.021
i	65 Cu	-0.193135	15.815	-191.343	ug/L	164.278
i	68 Zn	4.155938	2.664	3572.729	ug/L	1508.130
ì	75 As	0.227874	33.187	13417.758	ug/L	17316.771
i	82 Se	0.580169	71.050	398.814	ug/L	426.678
i	97 Mo	2026.351305	0.854	2341732.516	ug/L	25.000
>	72 Ge-1			1253651.833	ug/L	1659393.482
Γ	107 Ag	0.279143	3.225	1628.151	ug/L	54.667
}	111 Cd	0.433135	24.185	527,895	ug/L	7.768
	121 Sb	2.154929	0.304	8073.390	ug/L	67.667
	135 Ba	0.824611	4.028	1094,402	ug/L	267.337
L>	115 ln-1			1115155.504	ug/L	1392588.651
Γ	205 TI	0.125198	7.755	1350.438	ug/L	56.667
]	208 Pb	0.991795	0.470	14354,564	ug/L	989.688
L>	169 Tm-1			804725.463	ug/L	940776.202
Γ	50 Cr	259.813155	5.992	43997.580	ug/L	-1111.205
	53 Cr	-43.876014	8.239	105074.501	ug/L	175510.161
-	61 Ni	33.507142	15.731	3677.163	ug/L	3653.803
-	63 Cu	5.281029	0.745	6799.724	ug/L	114.669
1	67 Zn	23.981308	10.725	2861.97 8	ug/L	2183.430
-	66 Zn	10.736616	0.791	3409.859	ug/L	459.700
1	76 Se	-118.999365	39.724	-178806.149	ug/L	-232317.750
-	77 Se	3.756103	91.076	11827.594	ug/L	15234,612
	78 Se	2.050041	46.513	14578.382	ug/L	18365.731

Report Date/Time: Wednesday, April 26, 2006 17:07:50

Page 1

CALIBRATION REPORT

Method: 6020 (SOP: SAC-MT-001)	M01			Reported: 04/28/06 14:11:50			
Department: 120 (Metals)	-				Sou	ource: MetEdit	
Sample: ICSAB	Mult:	1.00	Dilf:	1.00	Divs:	1.000	
Instrument: ICPMS M01	Channel 261						
File: 060426B1 # 14	Method 602	.0,_					
Acquired: 04/26/2006 17:04:03	M01						
Calibrated: 04/26/2006 16:42:19					Units: ug/L		

⊠
3 🗹
3 - ☑
) <u>I</u>
!
2
3 🗹
) [
5 🗹
2 🗹
5 🗹
3 ☑
Q
☑
☑
\square
☑
46510525

Reviewed by:	Date:
IDB Reports Severn Trent Laborationes	Version: 6.02.068

View Page 6 of 50

Ph

STL Sacramento

SAMPLE SPIKE

Method: 6020 (SOP: SAC-MT-001)	M01	Reported: 04/28/06 14:13:59			
Department: 120 (Metals)			Sou	rce: MetEdi	
Sample: H3KFFZ	Spike Dilution:	1.00	Sample Dilution:	1.00	
Instrument: ICPMS M01	Channel 261				
File: 060426B1 # 56	Method 6020				

File: 060426B1 # 56 Method 6020_

Acquired: 04/26/2006 20:09:13 M01 Matrix: AIR
Calibrated: 04/26/2006 16:42:19 Units: ug/L

CASN	Analyte Name	M/S	Area	Amount	Sample	%Rec.	Spike	Flag	Q
7440-41-7	Bervilium	9	54312	204.81	0.00605	102 🗸	200		
	Aluminum	27	5188745	1149.3	89.821	106	1000		\mathbf{V}
	Vanadium	51	2006030	200.81	2.6549	99.1	200		\checkmark
	Chromium	52	1847743	200.31	-0.15456	100	200		\checkmark
7439-89-6	·	54	935025	1213.5	82.772	113	1000		
7439-89-6		57	362480	1201.8	102.30	110	1000		\square
7439-96-5	Manganese	55	2990902	217.25	3.9786	107	200		$\overline{\mathcal{A}}$
7440-48-4		59	2148342	205.28	0.44783	102	200		\square
7440-02-0	Nickel	60	460092	209.29	0.35757	104	200		\checkmark
7440-50-8	Copper	65	480867	240.53	32.225	104	200		$ \mathbf{V}$
7440-66-6	Zinc	68	168235	232.97	2.6360	115	200		
7440-38-2	Arsenic	75	392757	209.78	-0.05785	105	200		
7782-49-2	Selenium	82	35873	220.15	-0.18984	110	200		☑
7439-98-7	Molybdenum	97	301544	213.34	0.26014	107	200		
7440-22-4	-	107	370598	53.473	0.02154	107	50.0		\checkmark
7440-43-9	Cadmium	111	309622	211.22	0.02720	106	200		abla
7440-36-0	Antimony	121	231463	50.956	0.09262	102	50.0		
7440-39-3	Barium	135	279750	214.40	1.8256	106	200		\checkmark
7440-28-0	Thallium	205	685516	55.833	0.02433	112	50.0		
7439-92-1	Lead	208	3257479	208.60	0.85827	104 🐇	200		\square
CASN	ISTD Name	M/S	Area	Amount					Q
LITHIUM6	Lithium-6	6	948642						
7440-56-4		72	1533189						\square
7440-74-6	Indium	115	1881208						\mathbf{V}
7440-30-4	Thulium	169	922519						

ſ"			Į.
	Reviewed by	y: Date:	
ŧ.,			
	IDB Reports Sevem Trent	Laboratories	Version: 6.02.068

View Page 1 of 1

STL Sacramento Method: 6020 (SOP: SAC-MT-001) M01 Reported: 04/28/06 14:13:54 Department: 120 (Metals) Source: MetEdit

 Sample:
 H3KFFP5
 Serial Dilution:
 5.00
 Sample Dilution:
 1.00

 Instrument:
 ICPMS M01
 Channel 261

 File:
 060426B1 # 55
 Method 6020_

 Acquired:
 04/26/2006 20:04:56
 M01
 Matrix: AIR

 Calibrated:
 04/26/2006 16:42:19
 Units: ug/L

CASN	Analyte Name	M/S	Area	Dilution	Sample	%Diff.	MDL	Flag	Q
7440-41-7	Beryllium	9	2	-0.00149	0.00605	125	0.0070	NC	$\overline{\checkmark}$
	Aluminum	27	120683	84.811	89.821	5.58		*	
7440-62-2	Vanadium	51	-16719	8.4772	2.6549	219	2.4	NC	
7440-47-3	Chromium	52	36945	0.76939	-0.15456		8.6	NC	
7439-89-6	Iron	54	112979	68.060	82.772	17.8		. •	
7439-89-6	Iron	57	26669	89.563	102.30	12.4		*	
7439-96-5	Manganese	55	15309	4.5755	3.9786	15.0	J.6	NC	\square
7440-48-4	Cobalt	59	1038	0.46325	0.44783 🗸	3.44 *	3.1	NC	\square
7440-02-0	Nickel	60	467	0.73730	0.35757	106	2.9	NC	Ø
7440-50-8	Copper	65	13167	32.630	32.225	1.26	2.4	NC	ু∕⊠
7440-66-6	Zinc	68	3538	15.023	2.6360	470	5.2	NC '	
7440-38-2	Arsenic	75	15699	-0.74189	-0.05785		1.6	NC	
7782-49-2	Selenium	82	360	-1.0265	-0.18984		1.4	NC	$\overline{\mathbf{V}}$
7439-98-7	Molybdenum	97	154	0.46531	0.26014	78.9	0.94	NC	$\overline{\mathbf{V}}$
7440-22-4	-	107	179	0.09093	0.02154	322	0.012	NC	\square
7440-43-9	Cadmium	111	13	0.01699	0.02720	37.5	0.045	NC	☑
7440-36-0	Antimony	121	387	0.35314	0.09262	281		*	
7440-39-3	-	195	739	1.8342	1.8256	0.474	29.0	NC	$oldsymbol{arnothing}$
7440-28-0		205	224	0.07144	0.02433	194		*	
7439-92-1	Lead	208	4255	1.0610	0.85827	23.6	0.28	NC	☑
CASN	ISTD Name	M/S	Area	Amount					Q
LITHIUM6	Lithium-6	6	890992						
7440-56-4	Germanium	72	1529936						
7440-74-6	Indium	115	1360176						
7440-30-4	Thulium	169	916420						

^{*} Analyte not requested for this batch, no MDL NC: Serial dilution concentration < 100 X MDL E: Difference greater than Limit (10%)

	Reviewed by:	Date:	
2.7	(CVICION DAY)		
IDB Deputo	Severn Trent Labyratories		Version: 6.02.068

View Page 1 of 1

RUN SUMMARY

Method: 6020 (SOP: SAC-MT-001) Instrument: M01 Reported: 04/27/06 11:19:30

File II	D: 060426	B1			Analyst: ionesb						
#	Sample ID	Lot No.	Batch		DF	Analyzed Date	Comment	Q			
1	H3D0P n.i.	G6D150171-4	6116313	2A	1.0	04/26/06 16:12					
2	H3RG3 n.i.	G6D210149-3	6116313	2A	1.0	04/26/06 16:15		$\exists \Box$			
3	H3EVF n.i.	G6D170132-1	6116313	2A	1.0	04/26/06 16:18] 🗆			
4	H3KFF n.i.	G6D190170-1	6116334	2A	1.0	04/26/06 16:20					
5	H34FK n.i.	G6D260199-1	6116358	2A	1.0	04/26/06 16:23]□			
6	H34CQ n.i.	G6D260189-1	6116363	2A	1.0	04/26/06 16:26					
7	H337F n.i.	G6D260176-1	6116360	2A	1.0	04/26/06 16:29]			
8	Rinse 3X				3.0	04/26/06 16:37					
9	Blank				1.0	04/26/06 16:42					
10	Standard 1				1.0	04/26/06 16:46					
11	ICV				1.0	04/26/06 16:51.					
12	ICB /				1.0	04/26/06 16:55					
13	ICSA 🕶				1.0	04/26/06 16:59]□			
14	ICSAB,				1.0	04/26/06 17:04] 🗆			
15	Rinse				1.0	04/26/06 17:11] 🗆			
16	FB-F1685532				1.0	04/26/06 17:16] 🗆			
17	FB-F1685532				1.0	04/26/06 17:20					
18	CCV 1				1.0	04/26/06 17:24] 🗆			
19	CCB 1 **				1.0	04/26/06 17:29					
20	CCV 2				1.0	04/26/06 17:33					
21	CCB 2		1		1.0	04/26/06 17:37					
22	H3396B	G6D260000	6116313	2A	1.0	04/26/06 17:42					
23	H3396C	G6D260000	6116313	2A	1.0	04/26/06 17:46					
24	H3396L	G6D260000	6116313	2A	1.0	04/26/06 17:50					
25	H3EVF	G6D170132-1	6116313	2A	1.0	04/26/06 17:55					
26	H3EVFP5	G6D170132	6116313		5.0	04/26/06 17:59					
27	H3EVFZ	G6D170132-1	6116313		1.0	04/26/06 18:03					
28	H3D0P	G6D150171-4	6116313	2A	1.0	04/26/06 18:07					
29	H3D0V	G6D150171-5	6116313	2A	1.0	04/26/06 18:12		ļ 🗆 -			
30	H3D0W	G6D150171-6	6116313	2A	1.0	04/26/06 18:16					
31	H3RG3	G6D210149-3	6116313	2A	1.0	04/26/06 18:20					
32	CCV 3				1.0	04/26/06 18:25					
33	CCB 3				1.0	04/26/06 18:29					
34	CCV 4				1.0	04/26/06 18:33					
35	CCB 4				1.0	04/26/06 18:38					
36	H3EVH	G6D170132-2	6116313	2A	1.0	04/26/06 18:42					
37	H3EVK	G6D170132-3	6116313	2A	1.0						
38	H3EVL	G6D170132-4	6116313	2A	1.0						
39	H3EVM	G6D170132-5	6116313	2A	1.0	04/26/06 18:55					
40	H3EVN	G6D170132-6	6116313	2A	1.0	04/26/06 18:59					
41	H3EVQ	G6D170132-7	6116313	2A	1.0	04/26/06 19:04					
42	H3EVT	G6D170132-8	6116313	2A	1.0	04/26/06 19:08					
43	H3EV2	G6D170132-9	6116313	2A	1.0	04/26/06 19:12					
44	H3EV3	G6D170132-10	6116313	2A	1.0	04/26/06 19:17					
45	H3EV6	G6D170132-11	6116313	2A	1.0	04/26/06 19:21					
46	CCV 5				1.0	04/26/06 19:26					

RUN SUMMARY

Method: 6020 (SOP: SAC-MT-001)	· Instrument: M01	Reported: 04/27/06 11:19:30

File ID: 060426B1 Analyst: jonesb								
#	Sample ID	Lot No.	Batch		DF	Analyzed Date	Comment	Q
47	CCB 5			\top	1.0	04/26/06 19:30		
48	CCV 6-				1.0	04/26/06 19:34		
49	CCB 6				1.0	04/26/06 19:39		
50	H34E1C	G6D260000	6116334	2A	1.0	04/26/06 19:43		
51	H34E1L	G6D260000	6116334	2A	1.0	04/26/06 19:47		
52	Rinse				1.0	04/26/06 19:51		
53	H34E1B	G6D260000 -	6116334	2A	1.0	04/26/06 19:56		
54	H3KFF	G6D190170-1	6116334	2A	1.0	04/26/06 20:00		
55	H3KFFP5	G6D190170	6116334		5.0	04/26/06 20:04	-	
56	H3KFFZ	G6D190170-1	6116334		1.0	04/26/06 20:09		
57	CCV 7 ***				1.0	04/26/06 20:13		
58	CCB 7				1.0	04/26/06 20:17		
59	CCV 8				1.0	04/26/06 20:22		
60	CCB 8.		+ PS		1.0	04/26/06 20:26		
61	H3EV7	G6D170132-12		2A	1.0	04/26/06 20:30		
62	H3EV8		6116313	2A	1.0	04/26/06 20:35		
63	H3KFG	G6D190170-2	6116334	2A	1.0	04/26/06 20:39		
64	H3KFH	G6D190170-3	6116334	2A	1.0	04/26/06 20:44		
65	H3KFJ	G6D190170-4	6116334	2A	1.0	04/26/06 20:48		
66	H3KFL	G6D190170-5	6116334	2A	1.0	04/26/06 20:52		
67	H3KFM	G6D190170-6	6116334	2A	1.0	04/26/06 20:56		
68	CCV 9 ~			1	1.0	04/26/06 21:01		
69	CCB 9			1	1.0	04/26/06 21:05		
70	CCV 10,			1	1.0	04/26/06 21:09		
71	CCB 10			+	1.0	04/26/06 21:14		
72	H3KFP	G6D190170-7	6116334	2A	1.0	04/26/06 21:18		
73	H3KFQ		6116334	2A	1.0	04/26/06 21:22		
74	H3KFR		6116334	2A	1.0	04/26/06 21:27		
75	H3KFT		6116334	2A	1.0	04/26/06 21:31		
76	H3KFV	G6D190170-11	6116334	2A	1.0	04/26/06 21:36		
77	H3KFW	G6D190170-12		2A	1.0	04/26/06 21:40		
78	H3KFX	G6D190170-13	6116334	2A	1.0	04/26/06 21:44		
79	H3KF0		6116334	2A	1.0	04/26/06 21:49		
80	CCV 11				1.0	04/26/06 21:53		
81	CCB 11 ***				1.0	04/26/06 21:57		
82	CCV 12				1.0	04/26/06 22:02		
83	CCB 12				1.0	04/26/06 22:05		
84	CCV 13				1.0	04/26/06 22:09		
85	CCB 13				1.0	04/26/06 22:13		
86	H34JVC	G6D260000	6116358	2A	1.0	04/26/06 22:16		
87	H34JVL	G6D260000	6116358	2A	1.0	04/26/06 22:20		\exists_{\Box}
88	Rinse				1.0	04/26/06 22:23		
89	H34JVB	G6D260000	6116358	2A	1.0	04/26/06 22:27		
90	H34FK	G6D260199-1	6116358	2A	1.0	04/26/06 22:31		$\dashv \Box$
91	H34FKP5	G6D260199	6116358	 -' 	5.0	04/26/06 22:34		
92	H34FKZ	G6D260199-1	6116358	1	1.0	04/26/06 22:38		
35	HOTEINA	G0D500 199-1	U 1 10000	<u>i </u>	1.0	OHEORO EEROO		

RUN SUMMARY

Method: 6020 (SOP: SAC-MT-001) Instrument: M01 Reported: 04/27/06 11:19:30

File ID: 060426B1 Analyst: ionesb								
#	Sample ID	Lot No.	Batch		DF	Analyzed Date	Comment	C
93	H34FQ	G6D260199-2	6116358	2A	1.0	04/26/06 22:41		
94	H34FR	G6D260199-3	6116358	2A	1.0	04/26/06 22:45		
95	H34FV	G6D260199-4	6116358	2A	1.0	04/26/06 22:49		
96	CCV 14				1.0	04/26/06 22:52		; [
97	CCB 14				1.0	04/26/06 22:56		
98	CCV 15				1.0	04/26/06 22:59		
99	CCB 15				1.0	04/26/06 23:03		
100	H34KMC	G6D260000	6116363	2A	1.0	04/26/06 23:07		
101	H34KML	G6D260000	6116363	2A	1.0	04/26/06 23:10		
102	Rinse				1.0	04/26/06 23:14		
103	H34KMB	G6D260000	6116363	2A	1.0	04/26/06 23:17		[
104	H34CQ	G6D260189-1	6116363	2A	1.0	04/26/06 23:21		
105	H34CQP5	G6D260189	6116363		5.0	04/26/06 23:25		
106	H34CQX	G6D260189-1	6116363	2A	1.0	04/26/06 23:28		
107	H34CQZ	G6D260189-1	6116363		1.0	04/26/06 23:32		
108	H34CW	G6D260189-2	6116363	2A	1.0	04/26/06 23:35		
109	H34CX	G6D260189-3	6116363	2A	1.0	04/26/06 23:39		T.
110	CCV 16		-		1.0	04/26/06 23:43		
111	CCB 16			1	1.0	04/26/06 23:46]
112	CCV 17			1	1.0	04/26/06 23:50		
113	CCB 17			1 1	1.0	04/26/06 23:54		ַ
114	H34C0	G6D260189-4	6116363	2A	1.0	04/26/06 23:57		
115	H34C2	G6D260189-5	6116363	2A	1.0	04/27/06 00:01		
116	H34C3	G6D260189-6	6116363	2A	1.0	04/27/06 00:04		
117	H34C4	G6D260189-7	6116363	2A	1.0	04/27/06 00:08		
118	H34C5	G6D260189-8	6116363	2A	1.0	04/27/06 00:12		
119	H34C6	G6D260189-9	6116363	2A	1.0	04/27/06 00:15		
120	H34C7	G6D260189-10	6116363	2A	1.0	04/27/06 00:19		ַ [
121	H34C8	G6D260189-11	6116363	2A	1.0	04/27/06 00:22		
122	H34C9	G6D260189-12	6116363	2A	1.0	04/27/06 00:26		□
123	H34DA	G6D260189-13	6116363	2A	1.0	04/27/06 00:30		<u>ַ</u>
124	CCV 18			11	1.0	04/27/06 00:33		
125	CCB 18			1 1	1.0	04/27/06 00:37		
126	CCV 19	<u> </u>	1		1.0	04/27/06 00:41		
127	CCB 19				1.0	04/27/06 00:44		
128	H34J3B	G6D260000	6116360	2A	1.0			[
129	H34J3C	G6D260000	6116360	2A	1.0	04/27/06 00:52		
130	H34J3L	G6D260000	6116360	2A	1.0			[
131	H337F	G6D260176-1	6116360	2A	1.0	04/27/06 00:59		
132	H337FP5	G6D260176	6116360	1	5.0	04/27/06 01:02		
133	H337FX	G6D260176-1	6116360	2A	1.0	04/27/06 01:06		
134	H337FZ	G6D260176-1	6116360	1	1.0	04/27/06 01:09		
135	H337Q	G6D260176-2	6116360	2A	1.0	04/27/06 01:13		
136	H337R	G6D260176-3	6116360	2A	1.0	04/27/06 01:16		[
137	H337N	G6D260176-4	6116360	2A	1.0	04/27/06 01:20		
138	CCV 20	G00200170-7	5.,3000	+	1.0	04/27/06 01:24		E

RUN SUMMARY

Met	hod: 6020 (SC	DP: SAC-MT-001)	Instrument: M01			Reported: 04/27/06	11:19:30		
File II	D: 060426	5B1		Analyst: ionesb						
#	Sample ID	Lot No.	Batch	····	DF	Analyzed Date	Comment	Q		
139	CCB 20			T	1.0	04/27/06 01:27				
140	CCV 21				1.0	04/27/06 01:31				
141	CCB 21				1.0	04/27/06 01:35				
142	H337W	G6D260176-5	6116360	2A	1.0	04/27/06 01:38				
143	H337X	G6D260176-6	6116360	2A	1.0	04/27/06 01:42				
144	H3371	G6D260176-7	6116360	2A	1.0	04/27/06 01:45				
145	H338A	G6D260176-8	6116360	2A	1.0	04/27/06 01:49				
146	H338D	G6D260176-9	6116360	2A	1.0	04/27/06 01:53				
147	H338E	G6D260176-10	6116360	2A	1.0	04/27/06 01:56				
148	H338F	G6D260176-11	6116360	2A	1.0	04/27/06 02:00				
149	H338G	G6D260176-12	6116360	2A	1.0	04/27/06 02:03				
150	H338H	G6D260176-13	6116360	2A	1.0	04/27/06 02:07				
151	H338J	G6D260176-14	6116360	2A	1.0	04/27/06 02:11				
152	CCV 22				1.0	04/27/06 02:14				
153	CCB 22				1.0	04/27/06 02:18				

INTERNAL STANDARD SUMMARY

Method: 6020 (SOP: SAC-MT-001) M01 (M01) Reported: 04/27/06 11:19:30

File ID); 0 60426	B1	Analyst: ionesb							
			Germanium	Indium	Lithium-6	Thulium				
#	Sample ID	Analyzed Date					Q			
1	H3D0P n.i.	04/26/06 16:12	0.1	0.0	0.1	0.0				
2	H3RG3 n.i.	04/26/06 16:15	0.2	0.0	0.1	0.0				
3	H3EVF n.i.	04/26/06 16:18	0,0	0.0	0.0	0.0				
4	H3KFF n.i.	04/26/06 16:20	0.0	0.0	0.0	0.0				
5	H34FK n.i.	04/26/06 16:23	0.1	0.0	0.0	0.0				
6	H34CQ n.i.	04/26/06 16:26	0.1	0.0	0.0	0.0				
7	H337F n.i.	04/26/06 16:29	0.1	0.4	0.0	0.0				
8	Rinse 3X	04/26/06 16:37	96.5	99.5	99.4	98.2				
9	Blank	04/26/06 16:42	100.0	100.0	100.0	100.0	Ø			
10	Standard 1	04/26/06 16:46	93.7	96.3	99.9	96.2	図			
11	ICV	04/26/06 16:51	91.0	94.6	99.9	92.6	☑			
12	ICB	04/26/06 16:55	91.2	95.6	101.3	92.4	Ø			
13	ICSA	04/26/06 16:59	75.5	80.1	80.9	85.5	Ø			
14	ICSAB	04/26/06 17:04	77.2	85.1	79.0	87.1	☑			
15	Rinse	04/26/06 17:11	93.0	101.8	101.3	101.2	Ø			
16			98.7	102.0	96.3	100.8	図			
17	FB-F1685532	04/26/06 17:20	96.2	99.7	99.0	100.1	团			
18	CCV 1	04/26/06 17:24	88.9	94.4	100.4	94.1	Ø			
19	CCB 1	04/26/06 17:29	90.9	96.1	99.7	93.7	Ø			
20	CCV 2	04/26/06 17:33	90.3	94.8	99.5	95.0	Ø			
21	CCB 2	04/26/06 17:37	91.7	96.5	99.3	94.4	Ø			
22	H3396B	04/26/06 17:42	97.4	99.6	95.0	99.4	Ø			
23	H3396C	04/26/06 17:46	90.9	96.7	97.5	95.4	Ø			
24	H3396L	04/26/06 17:50	88.8	96.0	99.7	94.6	Ø			
25	H3EVF	04/26/06 17:55	93.3	95.8	97.5	95.6	Ø			
26	H3EVFP5	04/26/06 17:59	89.7	95.7	104.0	94.2				
27	H3EVFZ	04/26/06 18:03	91.1	95.3	97.1	94.4	☑			
28	H3D0P	04/26/06 18:07	92.5	97.5	100.5	97.2				
29	H3D0V	04/26/06 18:12	95.9	98.2	97.0	97.2	4			
30	H3D0W	04/26/06 18:16	97.4	98.2	96.9	99.5	ļ			
31	H3RG3	04/26/06 18:20	97.1	99.0	95.3	99.8	4			
32	CCV 3	04/26/06 18:25	90.6	94.0	98.4	94.9	1 —			
33	CCB 3	04/26/06 18:29	92.7	95.9	102.4	96.0	1			
34	CCV 4	04/26/06 18:33	91.5	93.4	99.4	95.4	-f			
35	CCB 4	04/26/06 18:38	92.7	96.2	100.7	96.7	4			
36	H3EVH	04/26/06 18:42	101.4	99.8	96.2	100.6	1 .			
37	H3EVK	04/26/06 18:46	100.0	101.0	96.8	101.2	4			
38	H3EVL	04/26/06 18:51	101.1	101.0	98,6	102.6	4			
39	H3EVM	04/26/06 18:55	100.1	100.4	96.8	100.7	ને			
40	H3EVN	04/26/06 18:59	101.8	101.9	97.6	103.7				
41	H3EVQ	04/26/06 19:04	102.1	102.4	96.4	103.3	₹			
42	H3EVT	04/26/06 19:08	100.7	102.7	98.3	104.1	-{			
43	H3EV2	04/26/06 19:12	102.5	102.3	97.3	103.3	4			
44	H3EV3	04/26/06 19:17	102.8	102.9	98.5		- 1			
45	H3EV6	04/26/06 19:21	103.0	102.8	96.7	104.7	4			
46	CCV 5	04/26/06 19:26	92.8	95.1	99.2	96.5	ľ			

View Page 5 of 8

STL-Sacramento (916) 373-5600

INTERNAL STANDARD SUMMARY

Method: 6020 (SOP: SAC-MT-001)

M01 (M01)

Reported: 04/27/06 11:19:30

File II	D: 060426	6B1		Ar	nalvst: ionesb	
			Germanium	Indium	Lithium-6	Thulium
#	Sample ID	Analyzed Date				
47	CCB 5	04/26/06 19:30	92.8	96.1	101.4	96.5
48	CCV 6	04/26/06 19:34	91.5	94.1	98.6	95.1
49	CCB 6	04/26/06 19:39	92.5	95.9	99.6	95.2
50	H34E1C	04/26/06 19:43	93.6	97.8	100.1	98.9
51	H34E1L	04/26/06 19:47	91.3	96.4	100.1	97.1
52	Rinse	04/26/06 19:51	89.6	95.9	105.3	94.7
53	H34E1B	04/26/06 19:56	95.0	99.1	100.8	99.4
54	H3KFF	04/26/06 20:00	96.3	99.5	102.2	100.7
55	H3KFFP5	04/26/06 20:04	92.2	97.7	105.0	97.4
56	H3KFFZ	04/26/06 20:09	92.4	97.7	100.5	98.1
57	CCV 7	04/26/06 20:13	88.5	93.7	102.6	93.7
58	CCB 7	04/26/06 20:17	89.7	94.1	102.6	93.3
59	CCV 8	04/26/06 20:22	90.6	93.1	102.4	94.6
60	CCB 8	04/26/06 20:26	91.8	95.1	102.4	95.1
61	H3EV7	04/26/06 20:30	99.8	99.5	98.8	99.4
62	H3EV8	04/26/06 20:35	97.3	99.4	98.4	99.2
63	H3KFG	04/26/06 20:39	99.5	101.5	101.3	101.9
64	H3KFH	04/26/06 20:44	102.0	102.1	99.9	102.7
65	H3KFJ	04/26/06 20:48	103.8	104.4	101.1	104.7
66	H3KFL	04/26/06 20:52	103.6	104.0	100.5	104.6
67	H3KFM	04/26/06 20:56	106.3	105.9	100.0	105.2
68	CCV 9	04/26/06 21:01	98.1	98.2	103.0	100.1
69	CCB 9	04/26/06 21:05	98.2	99.5	102.4	99.4
70	CCV 10	04/26/06 21:09	95.9	97.0	100.7	97.8
71	CCB 10	04/26/06 21:14	98.3	98.7	103.1	99,3
72	H3KFP	04/26/06 21:18	101.9	102.3	100.8	104.0
73	H3KFQ	04/26/06 21:22	105.4	103.4	99.0	103.0
74	H3KFR	04/26/06 21:27	108.5	104.5	97.8	104.7
7 5	H3KFT	04/26/06 21:31	107.5	103.9	97.7	104.8
76	H3KFV	04/26/06 21:36	108.7	105.1	98.7	105.0
77	H3KFW	04/26/06 21:40	108.6	105.0	97.8	105.0
78	H3KFX	04/26/06 21:44	108.0	105.6	99.6	107.1
79	H3KF0	04/26/06 21:49	107.4	106.1	99.8	106.7
80	CCV 11	04/26/06 21:53	99.8	100.1	103.7	101.6
81	CCB 11	04/26/06 21:57	99.6	99.3	103.6	100.3
82	CCV 12	04/26/06 22:02	96.9	97.0	102.8	98.4
83	CCB 12	04/26/06 22:05	98.6	100.7	105.4	99.9
84	CCV 13	04/26/06 22:09	97.5	97.6	103.5	99.4
85	CCB 13	04/26/06 22:13	99.1	99.4	105.1	99.4
86	H34JVC	04/26/06 22:16	98.3	102.9	102.1	103.1
87	H34JVL	04/26/06 22:20	97.0	103.5	104.5	103.6
88	Rinse	04/26/06 22:23	96.8	100.0	106.0	100.2
89	H34JVB	04/26/06 22:27	98.8	105.7	104.7	105.3
90	H34FK	04/26/06 22:31	100.2	105.9	106.5	106.0
91	H34FKP5	04/26/06 22:34	100.0	102.7	107.0	102.4
92	H34FKZ	04/26/06 22:38	99.8	105.2	105.5	106.5

View Page 6 of 8

INTERNAL STANDARD SUMMARY

Method: 6020 (SOP: SAC-MT-001) M01 (M01) Reported: 04/27/06 11:19:30

File ID: 060426B1			An	alvst: ionesb		
			Germanium	Indium	Lithium-6	Thulium
#	Sample ID	Analyzed Date				
93	H34FQ	04/26/05 22:41	100.2	106.6	104.3	107.4
94	H34FR	04/26/06 22:45	101.6	107.1	106.0	108.3
95	H34FV	04/26/06 22:49	101.5	107.4	106.7	109.0
96	CCV 14	04/26/06 22:52	98.2	100.6	106.7	101.2
97	CCB 14	04/26/06 22:56	101.0	104.3	108.2	103.5
98	CCV 15	04/26/06 22:59	99.5	100.5	106.9	102.3
99	CCB 15	04/26/06 23:03	101.3	103.5	107.1	103.5
100	Н34КМС	04/26/06 23:07	99.7	106.3	105.0	106.2
101	H34KML	04/26/06 23:10	99.3	107.2	106.9	107.4
102	Rinse	04/26/06 23:14	99.1	103.6	109.2	103.6
103	H34KMB	04/26/06 23:17	100.9	107.3	106.2	107.6
104	H34CQ	04/26/06 23:21	103.1	106.9	104.4	108.1
105	H34CQP5	04/26/06 23:25	103.0	106.5	107.6	106.2
106	H34CQX	04/26/06 23:28	104.4	107.8	104.3	108.7
107	H34CQZ	04/26/06 23:32	102.1	107.5	104.7	107.9
108	H34CW	04/26/06 23:35	101.7	108.3	105.6	107.8
109	Н34СХ	04/26/06 23:39	103.3	109.2	106.4	109.6
110	CCV 16	04/26/06 23:43	101.3	104.2	107.1	104.7
111	CCB 16	04/26/06 23:46	102.1	104.9	108.5	104.3
112	CCV 17	04/26/06 23:50	101.7	102.6	107.0	103.3
113	CCB 17	04/26/06 23:54	103.2	106.0	109.0	104.0
114	H34C0	04/26/06 23:57	104.6	109.1	104.4	109.6
115	H34C2	04/27/06 00:01	105.6	109.6	104.0	109.4
116	H34C3	04/27/06 00:04	105.9	108.4	102.6	109.3
117	H34C4	04/27/06 00:08	107.4	110.2	103.8	110.0
118	H34C5	04/27/06 00:12	107.5	109.9	105.1	109.9
119	H34C6	04/27/06 00:15	107.1	109.8	104.7	109.6
120	H34C7	04/27/06 00:19	106.8	110.0	103.6	110.7
121	H34C8	04/27/06 00:22	107.5	109.4	104.3	110.3
122	H34C9	04/27/06 00:26	106.8	109.1	104.6	111.0
123	H34DA	04/27/06 00:30	107.8	111.5	104.2	109.8
124	CCV 18	04/27/06 00:33	102.7	104.5	106.7	105.2
125	CCB 18	04/27/06 00:37	103.6	105.4	107.9	105.2
126	CCV 19	04/27/06 00:41	102.8	103.0	105.3	103.6
127	CCB 19	04/27/06 00:44	104.2	105.8	108.1	104.6
128	H34J3B	04/27/06 00:48	106.0	109.9	104.5	109.6
129	H34J3C	04/27/06 00:52	103.4	108.5	105.1	109.0
130	H34J3L	04/27/06 00:55	100.6	108.3	105.7	108.1
131	H337F	04/27/06 00:59	102.9	109.2	106.1	108.9
132	H337FP5	04/27/06 01:02	104.4	107.3	107.8	105.5
133	H337FX	04/27/06 01:06	104.3	109.3	102.5	108.6
134	H337FZ	04/27/06 01:09	102.3	108.6	103.4	106.9
135	H337Q	04/27/06 01:13	101.5	107.8	102.2	107.3
136	H337R	04/27/06 01:16	104.3	109.3	103.0	107.8
137	H337V	04/27/06 01:20	103.1	108.4	101.6	107.7
138	CCV 20	04/27/06 01:24	101.2	103.1	106.9	103.8

View Page 7 of 8

INTERNAL STANDARD SUMMARY

The second secon			
Method: 6020 (SOP: SAC-MT-001)	M01 (M01)	Reported: 04/27/06 1	1:19:30

File II	D: 060426	iB1	Analyst: ionesb					
			Germanium	Indium	Lithium-6	Thulium		
#	Sample ID	Analyzed Date				· · · · · · · · · · · · · · · · · · ·	Q	
139	CCB 20	04/27/06 01:27	103.2	105.5	108.3	105.1	\square	
140	CCV 21	04/27/06 01:31	101.0	101.7	104.2	102.3	\checkmark	
141	CCB 21	04/27/06 01:35	103.0	105.0	108.3	104.5		
142	H337W	04/27/06 01:38	104.1	108.0	101.9	107.9	Ø	
143	H337X	04/27/06 01:42	105.8	109.8	102.1	108.7	V	
144	H3371	04/27/06 01:45	105.8	110.9	101.5	107.7	\Box	
145	H338A	04/27/06 01:49	107.1	109.3	103.8	109.3	3	
146	H338D	04/27/06 01:53	108.3	111.8	104.2	110.0	$\overline{\mathbf{Q}}$	
147	H338E	04/27/06 01:56	106.0	108.3	101.2	107.9	abla	
148	H338F	04/27/06 02:00	107.1	111.1	102.3	109.0		
149	H338G	04/27/06 02:03	107.9	111.9	103.1	108.3	\checkmark	
150	H338H	04/27/06 02:07	105.5	109.9	102.2	108.9	abla	
151	H338J	04/27/06 02:11	108.1	111.0	102.3	108.7		
152	CCV 22	04/27/06 02:14	102.9	103.3	106.4	103.4	$ \sqrt{} $	
153	CCB 22	04/27/06 02:18	104.7	106.1	109.4	104.9	\Box	

STL SACRAMENTO Metals - Air Toxics - Preparation Log

AIR

Fraction: Filter SOP: Method: ICPMS

LOT ID		Workorder		Volume Received			Final Prep Volume	Batch	Prep Factor
G6D260000	343	Н34FMВ	2A	NA	NA	NA	100	6116334	1.2
G6D260000	343	H34FMC	2A	NA	NA	NA	100	6116334	1.2
G6D260000	343	H34FML	2A	NA	NA	NA	100	6116334	1.2
G6D190170	1 -	H3KFF	2A	9	0.75	0.75	100	6116334	1.2
G6D190170	2 -	H3KFG	2 A	9	0.75	0.75	100	6116334	1.2
G6D190170	3	НЗКГН	2A	9	0.7 5	0.75	100	6116334	1.2
G6D190170	4	НЗКFJ	2A	9	0.75	0.75	100	6116334	1.2
G6D190170	5 🛩	НЗ KFL	2A	9	0.75	0.75	100	6116334	1.2
G6D190170	6	НЗКЕМ	2A	9	0.75	0.75	100	6116334	1.2
G6D190170	7	H3KFP	2A	9	0.75	0.75	100	6116334	1.2
G6D190170	8	НЗКFQ	2A	9	0.75	0.75	100	6116334	1.2
G6D190170	9	H3KFR	2A	9	0.75	0.75	100	6116334	1.2
G6D190170	10	H3KFT	2A	9	0.75	0.75	100	6116334	1.2
G6D190170	11	НЗКFV	2 A	9	0.75	0.75	100	6116334	1.2
G6D190170	12 🐇	НЗКFW	2A	9	0.75	0.75	100	6116334	1.2
G6D190170	13	H3KFX	2A	9	0.75	0.75	100	6116334	1.2
G6D190170	14	H3KF0	2A	9	0.75	0.75	100	6116334	1.2
F1685532	Blank	Filter	2A	9	0.75	0.75	100	N/A	1.2

For 1" filter: factor = 9 (9/1) For 0.75" filter factor = 12 (9/0.75) Page 1 of 1 QA-372B mlt 02/20/03

STL Sacramento Metals Preparation Spiking Documentation Form

Lot#	C60190170				
Batch Number:	6116334	EPA Analytical Method ID:	(0020	Spiked Date:	
MS Rup #:	MIA	EPA Prep Method ID:	2.A	Hot Plate Microwave ID:	MET PREP III
Analyst Initial/Date:	Tru/25/06	Witness Initial/Date:	04/25/06NH	Hot Plate Temp	Observed: 90
Correct Folder ID Witness:	NA				

Check If Used	Bottle Name	Elements	Stock Concentration (mg/L)	Tracking Number	LCS/DCS Volume Spiked	MS/SD Volume Spiked	Expiration Date
	ICP Part 1 5% HNO ₃	Ca. Mg Al. As. Ba. Se. Sn. Tl Fe.Mo.Ti Sb.Co.Pb,Mn.Ni. V,Zn Cu Cr ,Be,Cd Ag	5,000 200 100 50 25 20 5	-		>	
	ICP Part 2 2% HNO;	K,Na P:S B.Li,Sr	5,000 1,000 100				
	Si H20/Tr HF	Si	1,000			- TPL	Irsloi
	XCAL-45 5% HN0,	Al,K.Mg.Ca,Na,Fe,P,B,Si As,Be,Cd,Cr,Co,Cu,Pb, Mn,Mo,Ni,Se,U,V,Zn,Ba, Li Sn,Sr,Ti Sb,Ag,TI	10	1774MET-78	2.OmL	4/4	2 2007
	Misc. Elements	S0,43.11				TPY	rsloc

Prep Reagents: Check If Used	Reagent	Supplier	Lot Number	Check If Used	Reagent	Supplier	Lot Number
	70% HNO ₃	Mallinckrodt	05/037 8150-37 AP 4/25	NIA	30% H ₂ O ₂	Mallinckrodt	Nla
N/A	37% HCl	Mallinckrodt	NA	NA	49% HF	Fisher	N/A

ICP matrix spike and LCS: For final volumes of 100ml, add 1ml from bottles ICP Part 1, ICP Part 2. Add 1ml of Silica (Si) when requested.

ICPMS matrix spike and LCS: For final volumes of 100ml, add 2ml of XCAL-45.

Amount to spike is as listed above for final volumes of 100ml. If a different final volume is used, increase or decrease the amount you spike proportionally.

STL Sacramento			CA	LIBRA	TION F	REPO	3T
Method: 6010	PE ICP2		· .	Reporte	d: 04/28/0	6 14:51:	35
Department: 120 (Metals) Sample: ICV4 (ICV) Instrument: PE 4300	Mult Channe	1 268	Dilf:	1.00	Sou Divs:	rce: OPT 1.000	
File: APR2806AX.csv # 5 Acquired: 04/28/2006 08:31:04 Calibrated: 04/28/2006 08:24:39	Method 60100 PE ICP2			Units: mg/L			
CASN Analyte Name 7440-70-2 Calcium 7439-95-4 Magnesium 7440-66-6 Zinc 7429-90-5 Aluminum 7439-89-6 Iron 7440-23-5 Sodium	Area	Found 9.7565 9.8652 0.96640 10.070 10.059 9.8273 9.7935 8.5711		10. 10. 1.0 10. 10. 10.	rue 000 000 000 000 000 000 000 000 000 0	%R 97.6 98.7 96.6 101 101 98.3 97.9 85.7	
7440-23-5 Sodium CASN ISTD Name A7440655 Y_ Axial R7440655 Y_ Radial In_Axial In Axial In_Radial In Radial Sc_Axial Sc Axial Sc_Radial Sc Radial	Area	95.441 93.836 95.859 96.268 96.998 98.026					ব্যার্থার্থার

	Reviewed by:	Date:
IDB Reports	Sevem Trent Laboratories	Version: 6.02.068
iooperii		

View Page 2 of 15

Sc_Radial Sc Radial

CALIBRATION REPORT

STL Sacramento						— <u>`</u>	
Method: 6010	PE ICP2			Reporte	d: 04/28/0	6 14:51	:35
Department: 120 (Metals) Sample: CCV (CCV)	Mul	t: 1.00	Dilf:	1.00	Sou Divs:	1.00	
Instrument: PE 4300 File: APR2806AX.csv # 16 Acquired: 04/28/2006 09:10:33 Calibrated: 04/28/2006 08:24:39	Channe Method PE IC	6010O		L	Jnits: mg/	L	
CASN Analyte Name	Area	Found		T	rue	%R	Q
7440-70-2 Calcium 7439-95-4 Magnesium 7440-66-6 Zinc 7429-90-5 Aluminum 7439-89-6 Iron 7439-89-6 Iron 7440-23-5 Sodium 7440-23-5 Sodium		25.136 25.423 2.5360 24.577 25.551 24.971 24.021 25.785		25. 25.	000 000	101 102 101 98.3 102 99.9 96.1 103	
CASN ISTD Name A7440655 Y_ Axial R7440655 Y_ Radial In_Axial In Axial In_Radiat In Radial Sc_Axial Sc_Axial	Area	93.548 94.334 92.692 96.644 96.306					
Sc Radial Sc Radial		95,958					ت

	Reviewed by:	Date:
IDB Reports	Severn Trent Laboratories	Version: 6.02.068

STL Sacramento	CA	LIBRA	TION I	REPO	RT		
Method: 6010	PE ICP2		· ·	Reported: 04/28/06 14:51:3			
Department: 120 (Metals) Sample: CCV (CCV)	Muli	: 1.00	Dilf:	1.00	Sol Divs:	urce: OPT 1.00	
Instrument: PE 4300 File: APR2806AX.csv # 28 Acquired: 04/28/2006 09:52:21 Calibrated: 04/28/2006 08:24:39	Channe Method PE IC	60100		Į	Units: mg	/L	
CASN Analyte Name	Area	Found		Ţ	rue	%R	Q
7440-70-2 Calcium 7439-95-4 Magnesium 7440-66-6 Zinc 7429-90-5 Aluminum 7439-89-6 Iron 7440-23-5 Sodium 7440-23-5 Sodium		24.933 25.264 2.5132 23.912 25.287 24.760 23.483 4		25. 2.5 25. 25. 25. 25.	000 000 000 000 000 000 .000	99.7 101 101 95.6 101 99.0 93.9	
CASN ISTD Name A7440655 Y_ Axial R7440655 Y_ Radial In_Axial In Axial In_Radial In Radial Sc_Axial Sc Axial Sc_Radial Sc Radial	Area	94.125 96.753 93.062 99.275 97.685 98.161					

The second secon			-
	Reviewed by:	Date:	·
IDB Reports	Severn Trent Laboratories		Version: 6.02.068

View Page 8 of 15

STL Sacramento	CA	LIBRA	TION I	REPO	RT		
Method: 6010	PE ICP2			Reported: 04/28/06 14:51:			35
Department: 120 (Metals)						urce: OPT	
Sample: CCV (CCV)	Mult	: 1.00	Dilf:	1.00	Divs:	1.000	
Instrument: PE 4300 File: APR2806AX.csv # 40 Acquired: 04/28/2006 10:33:28	Channe Method (PE IC	60100		ĺ	Units: mg	/L	
Calibrated: 04/28/2006 08:24:39			m ~~~~		rue	%R	
CASN Analyte Name	Area	Found					<u>~</u>
7440-70-2 Calcium		24.924	•		000	99.7, 101	
7439-95-4 Magnesium		25.222			000	101	
7440-66-6 Zing		2.5366			000	99.3	Ø
7429-90-5 Aluminum		24.814			.000	101	Ø
7439-89-6 Iron		25,361			.000	98.9	$\overline{\mathbf{Z}}$
7439-89-6 Iron		24.736			.000	97.0	☑
7440-23-5 Sodium 7440-23-5 Sodium		24.253 24.465			.000	97.9	
CASN ISTD Name	Area	Amount					Q
A7440655 Y_ Axial		93.250					☑
R7440655 Y_ Radial		95.494					Ø
In_Axial In Axial		92.202					Ø Ø
In_Radial In Radial		97.998					<u>∖</u>
Sc_Axial Sc Axial		97.345					∑
		06 747					

96.747

Date: Reviewed by: Version: 6.02.068 Severn Trent Laboratories IDB Reports

Page 10 of 15

abla

Sc_Radial Sc Radial

CALIBRATION REPORT STL Sacramento Reported: 04/28/06 14:51:35 PE ICP2 Method: 6010 Source: OPTIMA Department: 120 (Metals) 1.00 Divs: 1.000 Dilf: Muit: 1.00 Sample: CCV (CCV) Channel 268 Instrument: PE 4300 Method 6010O File: APR2806AX.csv #52 PE ICP2 Acquired: 04/28/2006 11:15:17 Units: mg/L Calibrated: 04/28/2006 08:24:39 %R Q True Area Found Analyte Name CASN \square 25.000 99.3 24.834 7440-70-2 Calcium \mathbf{V} 25.000 101 25,259 7439-95-4 Magnesium 101 \checkmark 2.5000 2.5321 7440-66-6 Zinc 97.9 ∇ 25,000 24.471 7429-90-5 Aluminum 101 abla25.000 25.357 7439-89-6 Iron 98.6 \square 25.000 24,640 7439-89-6 Iron \mathbf{V} 96.7 24.186 25.000 7440-23-5 Sodium \underline{V} 96.7 25.000 24.183 7440-23-5 Sodium Q Amount Area CASN ISTD Name 図 94.337 A7440655 Y_ Axial 96.152 R7440655 Y_ Radial \square 92.882 In_Axial In Axial \square 98.238 In_Radial In Radial ☑ 97.104 Sc. Axial Sc Axial $\sqrt{}$

97.389

Date: Reviewed by: Version: 6.02.068 Severn Trent Laboratories

> Page 12 of 15 View

Sc_Radial Sc Radial

STL Sacramento CALIBRATION REPO						REPO	3T
Method: 6010	PE ICP2	,	· .	Reported: 04/28/06 14:51:3			
Department: 120 (Metals)	epartment: 120 (Metals)					ırce: OPT	IMA
Sample: CCV (CCV)	Mul	1.00	Dilf:	1.00	Divs:	1.000) —¬
Instrument: PE 4300 File: APR2806AX.csv # 57 / Acquired: 04/28/2006 11:32:05	Channe Method PE IC	60100		ı	Units: mg	/L	
Calibrated: 04/28/2006 08:24:39	A				rue	%R	ر Q
CASN Analyte Name	Area	Found	· · · · · · · · · · · · · · · · · · ·				
7440-70-2 Calcium		25.257			000	101	\(\overline{\text{\tin}\ext{\texi{\text{\texi{\text{\tin}}\\ \tittt{\text{\text{\text{\text{\text{\text{\text{\text{\text{\texi}}\\ \text{\text{\text{\text{\text{\text{\text{\text{\text{\texi}\text{\text{\text{\text{\texi}\text{\text{\texi}\text{\text{\ti}\text{\text{\text{\text{\text{\texi}\tittt{\text{\text{\text{\ti}\}\tittt{\text{\texi}\text{\text{\texitit}}\text{\t
7439-95-4 Magnesium		25,656	****		.000	103 🗸 102	<u>✓</u>
7440-66-6 Zinc		2.5518			000	98.0	☑
7429-90-5 Aluminum		24,507			.000 .000	102	∀
7439-89-6 Iron		25.594				102	Ø
7439-89-6 Iron		25.041			.000 .000	96.2	<u> </u>
7440-23-5 Sodium		24.055			.000	103	Ø
7440-23-5 Sodium		25.739		20.	.000	100	
CASN ISTD Name	Area	Amount					_ <u>Q</u>
A7440655 Y_ Axial		94.226					Ø
R7440655 Y_ Radial		96.569	F				Ø
In_Axial In Axial		93.140					☑
In_Radial In Radial		99.669					☑
Sc_Axial Sc Axial		97.016					☑
Sc_Radial Sc Radial		97.996					∇

	Reviewed by:	Date:
IDD Breats	Severn Trent Laboratories	Version: 6,02.068

Page 14 of 15 View

Sc_Radial Sc Radial

STL Sacramento					BLAN	IK REF	PORT
Method: 6010	PE ICP2			Re	4:51:35		
Department: 120 (Metals) Sample: ICB	Mult		Dilf:	1.	00 [OPTIMA 1.000
Instrument: PE 4300 File: APR2806AX.csv # 6 Acquired: 04/28/2006 08:33:27 Calibrated: 04/28/2006 08:24:39	Channe Method 6 PE IC	S010O			Units	s; mg/L	
CASN Analyte Name	Area	Amount		RL	MDL	%RSD	Q
7440-70-2 Calcium 7439-95-4 Magnesium 7440-66-6 Zinc 7429-90-5 Aluminum 7439-89-6 Iron 7439-89-6 Iron 7440-23-5 Sodium 7440-23-5 Sodium		0.00438 -0.00037 0.00017 0.00722 0.00372 0.01192 0.01802 -0.50212		0.50 0.50 0.0050 0.10 0.050 0.050 0.50	0.0067 0.012 0.0033 0.015 0.012 0.012 0.0082 0.0082	0.0015 0.0058 0.00084 0.0056 0.0015 0.0080 0.018	
CASN ISTD Name A7440655 Y_ Axial R7440655 Y_ Radial In_Axial In Axial In_Radial In Radial Sc_Axial Sc Axial Sc_Radial Sc Radial	Area	98.669 97.461 98.819 100.11 98.559 97.337					 전 전 전 전 전

	Reviewed by:	Date:
IDB Reports	Severn Trent Laboratories	Version: 6.02.068

G6D190170

Method: 6010	PE ICP2		R	eported: 0	4/28/06 1	4:51:35
Department: 120 (Metals)	14.3	t: 1.00	Dilf: 1	.00.		OPTIMA 1.000
Sample: CCB	Muì	1.00				
Instrument: PE 4300	Channe	el 268				
File: APR2806AX.csv # 17	Method	6010O				ļ
Acquired: 04/28/2006 09:12:56	PE K	CP2				1
Calibrated: 04/28/2006 08:24:39				Units	s: mg/L	
CASN Analyte Name	Area	Amount	RL	MDL	%RSD	Q
		0.00532	0.50	0.0067	0.00061	\square
7440-70-2 Calcium		-0.00197	0.50	0.012	0.0016	
7439-95-4 Magnesium 7440-66-6 Zinc		0.00025	0.0050	0.0033	0.00014	
7429-90-5 Aluminum		0.00210	0.10	0.015	0.011	
7439-89-6 Iron		0.00114	0.050	0.012	0.00024	
7439-89-6 Iron		0.00464	0.050	0.012	0.0038	
7440-23-5 Sodium		0.00191	0.50	0.0082	0.0048	
7440-23-5 Sodium		-0.71761	0.50	0.0082	0.62	
CASN ISTD Name	Area	Amount		· · · · · · · · · · · · · · · · · · ·		Q Ø
A7440655 Y_ Axial		99.698				<u>v</u>
R7440655 Y_ Radial		97.595				<u>v</u> .
In_Axial In Axial		99,609				
In_Radial In Radial		101.23				☑
Sc_Axial Sc Axial		99.587				<u>~</u>
Sc_Radial Sc Radial		97.569	Ł			-
	Ši	a min	and.			

Reviewed by: Date:

IDB Reports Severn Trent Laboratories Version: 6.02.068

View Page 7 of 15

Method: 6010	PE ICP2		Reported: 04/28/06 14				4:51:35
Department: 120 (Metals)						Source:	OPTIMA
Sample: CCB	Mui	it: 1.00	Dilf:	1.	00	Divs:	1.000
Instrument: PE 4300 File: APR2806AX.csv # 29 Acquired: 04/28/2006 09:54:44 Calibrated: 04/28/2006 08:24:39	Chann Method PE lo	60100			Unit	s: mg/L	
CASN Analyte Name	Area	Amount		RL	MDL		
7440-70-2 Calcium 7439-95-4 Magnesium 7440-66-6 Zinc 7429-90-5 Aluminum 7439-89-6 Iron 7440-23-5 Sodium 7440-23-5 Sodium		-0.00043 0.00358 0.00024 0.00045 0.00179 0.00906 0.00846 -0.23385		0.50 0.50 0.0050 0.10 0.050 0.050 0.50 0.	0.0067 0.012 0.0033 0.015 0.012 0.012 0.0082	0.0052 0.0000060 0.0089 0.00037 0.0045 0.013	
CASN ISTD Name A7440655 Y_Axial R7440655 Y_Radial In_Axial In Axial In_Radial In Radial Sc_Axial Sc Axial Sc_Radial Sc Radial	Area MALI MALI MEMALE MEMLE MEMALE MEMALE MEMALE MEMALE MEMALE MEMALE MEMALE MEMAL	Amount 100.07 101.36 99.462 102.16 99.887 101.17	- 				고 고 고 고 고

Reviewed by: Date:

IDB Reports Severn Trent Laboratories Version: 6.02.068

View Page 9 of 15

STL Sacramento					BLAN	IK RE	PORT
Method: 6010	PE ICP2			Reported: 04/28/06 14:51			
Department: 120 (Metals) Sample: CCB	Mul	lt: 1.00	Dilf:	1	.00.	Source: Divs:	OPTIMA 1.000
Instrument: PE 4300 File: APR2806AX.csv # 41 Acquired: 04/28/2006 10:35:48 Calibrated: 04/28/2006 08:24:39	Chann Method PE I	60100			Units	s: mg/L	
CASN Analyte Name	Area	Amount		RL.	MDL	%RSD	Q
7440-70-2 Calcium 7439-95-4 Magnesium 7440-66-6 Zinc 7429-90-5 Aluminum 7439-89-6 Iron 7439-89-6 Iron 7440-23-5 Sodium 7440-23-5 Sodium	en to	0.00284 0.00823 0.00057 0.00047 0.00146 0.01798	(0.50 0.50 0050 0.10 0.050 0.050 0.50	0.0067 0.012 0.0033 0.015 0.012 0.012 0.0082 0.0082	0.00035 0.0048 0.000028 0.0061 0.00077 0.011 0.0067	
CASN ISTD Name A7440655 Y_ Axial R7440655 Y_ Radial In_Axial In Axial In_Radial In Radial Sc_Axial Sc Axial Sc_Radial Sc Radial	Area	Amount 100.14 100.90 99.601 101.75 100.03 100.74					Q 2 2 2 2 2 2

	Reviewed by:	Date:
IDB Reports	Sevem Trent Laboratories	Version: 6.02.068

View Page 11 of 15

STL Sacramento					BLAN	IK RE	PORT
Method: 6010	PE ICP2			Re	ported: 0	4/28/06 1	4:51:35
Department: 120 (Metals) Sample: CCB	Mu	lt: 1.00	Dilf:	1.	00 E	Source: Divs:	OPTIMA 1.000
Instrument: PE 4300 File: APR2806AX.csv # 53 Acquired: 04/28/2006 11:17:41 Calibrated: 04/28/2006 08:24:39	********	el 268 60100 CP2			Units	s: mg/L	
CASN Analyte Name	Area	Amount		RL	MDL	%RSD	
7440-70-2 Calcium 7439-95-4 Magnesium 7440-66-6 Zinc 7429-90-5 Aluminum 7439-89-6 Iron 7440-23-5 Sodium 7440-23-5 Sodium		-0.00342 0.00050 0.00043 -0.00071 0.00124 0.00617 0.00344 -1.2161	,	0.50 0.50 0.0050 0.10 0.050 0.050 0.50 0.	0.0067 0.012 0.0033 0.015 0.012 0.012 0.0082 0.0082	0.0060 0.0048 0.00034 0.0021 0.00023 0.00071 0.0037	
CASN ISTD Name A7440655 Y_Axial R7440655 Y_Radial In_Axial In Axial In_Radial In Radial Sc_Axial Sc Axial Sc_Radial Sc Radial	Area	Amount 100.44 99.011 99.723 102.52 100.26 98.905					

	Reviewed by:	Date:
IDB Reports	Sevem Trent Laboratories	Version: 6.02.068

G6D190170

STL Sacramento					BLAN	IK RE	PORT
Method: 6010	PE ICP2		·	Re	eported: 0	4/28/06	14:51:35
Department: 120 (Metals)						Source	: OPTIMA
Sample: CCB	Mu	lt: 1.00	Dilf:	1.	.00 [Divs:	1.000
Instrument: PE 4300 File: APR2806AX.csv # 58 Acquired: 04/28/2006 11:34:28 Calibrated: 04/28/2006 08:24:39	Chann Method PE I	6010O			Units	s: mg/L	
CASN Analyte Name	Area	Amount		RL	MDL	%RSI) Q
7440-70-2 Calcium 7439-95-4 Magnesium 7440-66-6 Zinc 7429-90-5 Aluminum 7439-89-6 Iron 7439-89-6 Iron 7440-23-5 Sodium 7440-23-5 Sodium	No.	-0.00001 0.00120 0.00039 -0.00505 0.00201 0.00831 0.01099 -0.93103	C	0.50 0.50 0.0050 0.10 0.050 0.050 0.50 0.	0.0067 0.012 0.0033 0.015 0.012 0.012 0.0082 0.0082	0.0012 0.0022 0.00002 0.005 0.0005 0.0002 0.011	4
CASN ISTD Name A7440655 Y_ Axial R7440655 Y_ Radial In_Axial In Axial In_Radial In Radial Sc_Axial Sc Axial Sc_Radial Sc Radial	Area	Amount 100.69 100.91 99.876 102.45 100.48 100.79					Q ସ ସ ସ ସ ସ

A	Reviewed by:	Date:
IDB Reports	Severn Trent Laboratories	Version: 6.02.068

STL Sacramento		CA	LIBRAT	ION F	REPOF	3 <u>T</u>
Method: 6010	PE ICP2		Reported	1: 04/28/0	6 14:51:	35
Department: 120 (Metals) Sample: ICSA	Mult; 1.90	Dilf:	1.00	Sou Divs:	1.000	
Instrument: PE 4300 File: APR2806AX.csv # 8 Acquired: 04/28/2006 08:40:39 Calibrated: 04/28/2006 08:24:39	Channel 268 Method 6010O PE ICP2		U	nits: mg/	ïL 	
CASN Analyte Name	Area Found		Tri	ue	%R	Q
7440-70-2 Calcium 7439-95-4 Magnesium 7440-66-6 Zinc 7429-90-5 Aluminum 7439-89-6 Iron 7439-89-6 Iron 7440-23-5 Sodium 7440-23-5 Sodium	468.27* 459.61 0.00697 494.21 185.72 185.36 0.01067 -2.5689		500. 500. 500. 200. 200.	00 00 00	93.7 91.9 98.8 92.9 92.7	অতাতাতাতাতাতাতাতাতাতাতাতাতাতাতাতাতাতাতা
CASN ISTD Name A7440655 Y_Axial R7440655 Y_Radial In_Axial In Axial In_Radial In Radial Sc_Axial Sc Axial Sc_Radial Sc Radial	Area Amount 84.619 87.532 80.349 87.136 86.941 87.978					

	 The state of the s		
	Reviewed by:	Date:	
IDB Reports	 Severn Trent Laboratories		Version: 6.02.068

View Page 4 of 15

Method: 6010 PE ICP2	Reporte	ed: 04/28/	06 14:51	:35
Department: 120 (Metals)		Sou	urce: OPT	ΓΙΜΑ
Sample: ICSAB_4.0 Mult: 1.00 Dilf:	1.00	Divs:	1.00	0
Instrument: PE 4300 Channel 268				
File: APR2806AX.csv # 9 Method 6010O				
Acquired: 04/28/2006 08:43:11 PE ICP2		5 1	л	
Calibrated: 04/28/2006 08:24:39		Units: mg	/L	
CASN Analyte Name Area Found	7	rue	%R	Q
7440-70-2 Calcium 461.72	500	0.00	92.3	
7439-95-4 Magnesium 467.55		0.00	93.5 🦯	
7440-66-6 Zinc 0.96732 /		0000	96.7	Ø
7429-90-5 Aluminum 487.15		0.00	97.4	Ø
7439-89-6 Iron 188.22 /	•	0.00	94.1	N N
7439-89-6 Iron 185.79	200	0.00	92.9	įΣ
7440-23-5 Sodium -0.00855			*	
7440-23-5 Sodium -1.5405				
CASN ISTD Name Area Amount		<u></u> .		Q
A7440655 Y_ Axial 83.630				Ø
R7440655 Y_ Radial 87.178				Ø
In_Axial In Axial 79.882				Ø
In_Radial In Radial 86.648				abla
Sc_Axiat Sc Axial 85.627				☑
Sc_Radial Sc Radial 88.657				L.

	Reviewed by:	Date:
and the second s		
IDB Penoris	Sevem Trent Laboratories	Version: 6.02.068

View Page 5 of 15

STL Sacramento				SA	MPLE	SPI	<u>KE</u>
Method: 6010	PE ICP2			Reported:	04/28/06	6 14:51	28
Department: 120 (Metals) Sample: H3KFFZ		ke Dilution:	1.00	Sample D		ce: OPT 1.00	IMA
Instrument: PE 4300 File: APR2806AX.csv # 39 Acquired: 04/28/2006 10:29:57 Calibrated: 04/28/2006 08:24:39	Chann Method PE l	6010O		,	atrix: AIR its: mg/L		
CASN Analyte Name 7440-70-2 Calcium 7439-95-4 Magnesium 7440-66-6 Zinc 7429-90-5 Aluminum 7439-89-6 Iron 7439-89-6 Iron 7440-23-5 Sodium	Area	Amount 47.125 48.581 0.50235 2.0061 1.1286 1.1275 46.690 46.703	Sample 0.33523 0.09133 0.00801 0.08612 0.10640 0.10225 0.54933 0.07473	%Rec. 93.6 • 97.0 98.9 96.0 102 103 • 92.3 93.3	50.0 0.500 2.00 1.00	Flag	
7440-23-5 Sodium CASN ISTD Name A7440655 Y_ Axial R7440655 Y_ Radial In_Axial In Axial In_Radial In Radial Sc_Axial Sc_Axial Sc_Radial Sc_Radial	Area	Amount 96.881 96.771 94.852 99.786 98.769 98.612					

· 		
	Reviewed by:	Date:
IDB Reports	Severn Trent Laboratories	Version: 6.02.068

View Page 1 of 1

STL Sacramento		_		SERIA	AL DII	_UTIC	N
Method: 6010	PE ICP2			Reported:	04/28/06	6 14:51.2	:4
Department: 120 (Metals) Sample: H3KFFP5 Instrument: PE 4300 File: APR2806AX.csv # 38 Acquired: 04/28/2006 10:26:20 Calibrated: 04/28/2006 08:24:39	Seri Channe Method PE IC	6010O	5.00	,,,,,			МА
CASN Analyte Name 7440-70-2 Calcium 7439-95-4 Magnesium 7440-66-6 Zinc 7429-90-5 Aluminum 7439-89-6 Iron 7439-89-6 Iron 7440-23-5 Sodium	Area	Dilution 0.38793 0.07854 0.01788 0.08895 0.10387 0.13930 0.61162 -5.9995	Sample 0.33523 0.09133 0.00801 0.08612 0.10640 0.10225 0.54933 0.07473	%Diff. 15.7 14.0 123 3.28 2.39 36.2 11.3 8130	MDL 0.75 0.081 0.034 0.012 0.012 1.7 1.7	NC NC NC NC NC NC NC	ত বিষ্ণু প্ৰায় বিষ
7440-23-5 Sodium CASN ISTD Name A7440655 Y_ Axial R7440655 Y_ Radial In_Axial In Axial In_Radial In Radial Sc_Axial Sc Axial Sc_Radial Sc Radial	Area	99.774 100.64 99.274 102.49 99.586 100.58					

^{*} Analyte not requested for this batch, no MDL NC: Serial dilution concentration < 50 X MDL E: Difference greater than Limit (10%)

	The second secon		
	Reviewed by:	Date:	:
IDB Reports	Severn Trent Laboratories		Version: 6.02.068

View Page 1 of 1

RUN SUMMARY

10 3 3 5 1 1 1 2 1 2 1 2 1	DE 1000 (000)		Reported: 04/28/06 14:50:32
Method: 6010	PF ICP2 (P05)		Reputted. 04/20/00 14.50.02
Livietiou. Outo	1 2 101 2 (1 00)	and the second second	
 In the second state of the second	and the second of the second o		the state of the s

File ID: APR2806AX.csv	
------------------------	--

Analyst: WONGA

#	Sample ID	Lot No.	Batch		DF	Analyzed Date	Comment	Q
1	Calib_Blank_				1.0	04/28/06 08:21		
2	Calib_Std_1				1.0	04/28/06 08:24		
3	ZZZZZ				1.0	04/28/06 08:26		
4	Calib Std 2				1.0	04/28/06 08:28		
5	ICV4				1.0	04/28/06 08:31		□
6	ICB -				1.0	04/28/06 08:33		
7	PQL				1.0	04/28/06 08:37		
8	ICSA -				1.0	04/28/06 08:40		
9	ICSAB_4.0				1.0	04/28/06 08:43		
10	FB F1685532				1.0	04/28/06 08:49		
11	H34D0B	G6D260000	6116325	2A	1.0	04/28/06 08:53		
12	H34D0C	G6D260000	6116325	2A	1.0	04/28/06 08:56		
13	H34D0L	G6D260000	6116325	2A	1.0	04/28/06 08:59		
14	H3EVF	G6D170132-1	6116325	2A	1.0	04/28/06 09:03		□
15	H3EVFP5	G6D170132	6116325		5.0	04/28/06 09:06	V.E.	
16	CCV				1.0	04/28/06 09:10		
17	ССВ				1.0	04/28/06 09:12		
18	H3EVFZ	G6D170132-1	6116325		1.0	04/28/06 09:16		
19	H3EVH	G6D170132-2	6116325	2A	1.0	04/28/06 09:20		
20	НЗЕVК	G6D170132-3	6116325	2A	1.0	04/28/06 09:23		
21	H3EVL	G6D170132-4	6116325	2A	1.0	04/28/06 09:27		
22	H3EVM	G6D170132-5	6116325	2A	1.0	04/28/06 09:30		
23	H3EVN	G6D170132-6	6116325	2A	1.0	04/28/06 09:34		
24	H3EVQ	G6D170132-7	6116325	2A	1.0	04/28/06 09:37		
25	H3EVT	G6D170132-8	6116325	2A	1.0	04/28/06 09:41		
26	H3EV2	G6D170132-9	6116325	2A	1.0	04/28/06 09:45		
27	H3EV3	G6D170132-10	6116325	2A	1.0	04/28/06 09:48		
28	CCV-				1.0	04/28/06 09:52		
29	CCB	}		1	1.0	04/28/06 09:54		
30	H3EV6	G6D170132-11	6116325	2A	1.0	04/28/06 09:58		
31	H3EV7	G6D170132-12	6116325	2A	1.0	04/28/06 10:01		
32	H3EV8	G6D170132-13	6116325	2A	1.0	04/28/06 10:05		E
33	FB F1685532	000170102			1.0	04/28/06 10:09		
34	H34FMB	G6D260000	6116343	2A	1.0	04/28/06 10:12		
35	H34FMC	G6D260000	6116343	2A	1.0	04/28/06 10:16		
36		G6D260000	6116343	2A		04/28/06 10:19		
37	H3KFF	G6D190170-1	6116343	2A	1.0			
38	H3KFFP5	G6D190170	6116343		5.0	04/28/06 10:26		
39	H3KFFZ	G6D190170-1	6116343	1	1.0	04/28/06 10:29		
40	CCV /	dob too it o	10,100.1-	+ +	1.0			Γ
	CCV			+ -+	1.0			[
41		G6D190170-2	6116343	2A	1.0			
42	H3KFG	G6D190170-3	6116343	2A	1.0			
43	H3KFH			2A	1.0			
44		G6D190170-4	6116343					
45	H3KFL	G6D190170-5	6116343	2A	1.0	04/20/00 10:30		

RUN SUMMARY

- Louise Transfer (1994) - 1 - 21 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		
	PE ICP2 (P05)	Reported: 04/28/06 14:50:32
Method: 6010		

File ID: APR2806AX.csv

Analyst: WONGA

#	Sample ID	Lot No.	Batch		DF	Analyzed Date	Comment	
47	H3KFP	G6D190170-7	6116343	2A	1.0	04/28/06 10:57		E
48	H3KFQ	G6D190170-8	6116343	2A	1.0	04/28/06 11:00][
49	H3KFR	G6D190170-9	6116343	2A	1.0	04/28/06 11:04		[
50	H3KFT	G6D190170-10	6116343	2A	1.0	04/28/06 11:08		[
51	H3KFV	G6D190170-11	6116343	2A	1.0	04/28/06 11:11		
52	CCV "				1.0	04/28/06 11:15		[
53	CCB 🗸				1.0	04/28/06 11:17		E
54	H3KFW	G6D190170-12	6116343	2A	1.0	04/28/06 11:21		
55	H3KFX	G6D190170-13	6116343	2A	1.0	04/28/06 11:24		
56	H3KF0	G6D190170-14	6116343	2A	1.0	04/28/06 11:28		
57	CCV				1.0	04/28/06 11:32		
58	CCB	<u> </u>		1	1.0	04/28/06 11:34		[

INTERNAL STANDARD SUMMARY

Method: 6010 ()	PE ICP2 (P05)	 Reported: 04/28/06 14:50:32

File II	D: APR2806A	VX.csv	Analyst: WONGA						
			In	ln	Sc	Sc	Υ_	Y_	
#	Sample ID	Analyzed Dat		Radial	Axial	Radial	Axial	Radial	Q
1	Calib_Blank_	04/28/06 08:21	0.0	0.0	0.0	0.0	0.0	0.0	
2	Calib Std 1	04/28/06 08:24		0.0	0.0	0.0	0.0	0.0	Ø
3	77777	04/28/06 08:26	79.6	85.6	87.6	89.7	85.0	86.3	$\overline{\mathbf{V}}$
4	Calib Std 2	04/28/06 08:28	0.0	0.0	0.0	0.0	0.0	0.0	Ø
5	ICV4	04/28/06 08:31	95.9	96.3	97.0	98.0	95.4	93.8	Ø
6	ICB	04/28/06 08:33	98.8	100.1	98.6	97.3	98.7	97.5	☑
7	PQL	04/28/06 08:37	100.1	100.2	100.1	97.7	99.6	97.4	\square
8	ICSA	04/28/06 08:40	80.3	87.1	86.9	88.0	84.6	87.5	Ø
9	ICSAB 4.0	04/28/06 08:43	79.9	86.6	85.6	88.7	83.6	87.2	☑
10	FB F1685532	04/28/06 08:49	101.0	102.8	100.8	98.6	100.3	98.5	Ø
11	H34D0B	04/28/06 08:53	101.0	101.9	101.1	98.8	101.0	98.8	Ø
12	H34D0C	04/28/06 08:56	94.1	97.8	96.9	96.7	94.9	94.7	V
13	H34D0L	04/28/08 08:59	93.0	98.5	97.7	98.7	95.6	96.6	Ø
14	H3EVF	04/28/06 09:03	101.1	103.6	101.1	103.2	100.9	103.1	☑
15	H3EVFP5	04/28/06 09:06	99.5	101.4	99.5	99.6	99.4	99.4	☑
16	ccv	04/28/06 09:10	92.7	96.6	96.3	96.0	93.5	94.3	团
17	ССВ	04/28/06 09:12	99.6	101.2	99.6	97.6	99.7	97.6	Ø
18	H3EVFZ	04/28/06 09:16	94.6	98.3	95.1	99.1	93.3	97.3	Ø
19	H3EVH	04/28/06 09:20	100.7	104.0	101.0	101.2	100.8	101.2	☑
20	H3EVK	04/28/06 09:23	99.9	104.1	100.3	101.3	100.0	101.2	\square
21	H3EVL	04/28/06 09:27	101.0	103.1	101.4	102.4	101.1	102.3	☑
22	H3EVM	04/28/06 09:30	100.9	103.5	101.1	101.5	100.6	101.1	Ø
23	H3EVN	04/28/06 09:34	101.0	102.7	101.1	100.7	100.8	100.5	Ø
24	H3EVQ	04/28/06 09:37	102.0	103.7	102.3	102.6	102.0	102.6	Ø
25	H3EVT	04/28/06 09:41	100.7	103.2	101.1	100.9	100.9	100.9	Ø
26	H3EV2	04/28/06 09:45	100.9	103.4	101.1	100.4	100.8	100.4	Ø
27	H3EV3	04/28/06 09:48	102.1	103.6	102.5	102.0	102.3	102.0	☑
28	CCV	04/28/06 09:52	93.1	99.3	97.7	98.2	94.1	96.8	ł
29	CCB	04/28/06 09:54	99.5	102.2	99.9	101.2	100.1	101.4	4
30	H3EV6	04/28/06 09:58	101.4	103.7	101.9	101.5	101.5	101.4	l .
31	H3EV7	04/28/06 10:01	100.9	104.4	101.2	102.5	101.0	102.4	·I
32	H3EV8	04/28/06 10:05	102.6	103.5	102.9	100.0	102.6	100.1	₹
33	FB F1685532	04/28/06 10:09	100.1	104.1	100.6	102.0	100.3	101.9	
34	H34FMB	04/28/06 10:12	100.9		101.2	102.4	101.1	102.6	1
35	H34FMC	04/28/06 10:16			98.5	99.7	96.6	97.6	. —
36	H34FML	04/28/06 10:19	95.0		97.9	97.9	96.0	96.0	į —
37	H3KFF	04/28/06 10:22		1	102.4	105.0	102.3	104.9	ť
38	H3KFFP5	04/28/06 10:26	99.3		99.6	100.6	99.8	100.6	1 .
39	H3KFFZ	04/28/06 10:29			98.8	98.6	96.9	96.8	4
40	CCV	04/28/06 10:33			97.3	96.7	93.3	95.5	4
41	CCB	04/28/06 10:35			100.0	100.7	100.1	100.9	4
42	НЗКFG	04/28/06 10:39		·	101.9	103.3	101.6	103.2	1 .
43	H3KFH	04/28/06 10:43	102.6	i — — — — — —	102.9	102.1	102.6	102.0	₹ .
44	H3KFJ	04/28/06 10:46			102.5	103.3	102.2	103.1	- 1
45	H3KFL	04/28/06 10:50		 	102.2	102.6	101.9		1 .
46	нзкғм	04/28/06 10:53	102.9	105.4	103.2	104.7	102.9	104.4	V

View Page 3 of 4

INTERNAL STANDARD SUMMARY

		 		$\overline{}$
		 	and the second of the second o	
Probability and a second of the first of the contract of th			the contract of the contract o	- 1
The state of the s			m 1 1 2 4 2 2 2 2 4 4 5 2 4	·~ i
Late 10° Conto A	ከም <u>ተ</u> ሶበሳ (ክሳድ)		Reported: 04/28/06, 14:50:3	. フロ
I Method: 6010.0	ヒヒ いとく ほいい		TICDOREG, U4720/00 17.00.0	ا ~
I Memori octoti	1 = 10. = (1 00)			
I The True British Bull of V				
The state of the s				- 3

File I	D: APR2806.	AX.csv			Ar	nalvst: WONG	βA		
			ln	In	Sc	Sc	Y_	Y_	
#	Sample ID	Analyzed Date	Axial	Radial	Axial	Radial	Axial	Radial	Q
47	H3KFP	04/28/06 10:57	102.1	105.3	102.3	103.1	101.9	102.7	<u> </u>
48	H3KFQ	04/28/06 11:00	102.8	105.4	102.8	101.8	102.3	101.4	Ø
49	H3KFR	04/28/06 11:04	103.3	102.7	103.3	99.8	102.8	99.7	<u></u>
50	H3KFT	04/28/06 11:08	104.0	105.9	104.1	103.9	103.4	103.5	₹
51	H3KFV	04/28/06 11:11	102.7	105.8	103.2	101.8	102.8	101.7	′ [
52	CCV	04/28/06 11:15	92.9	98.2	97.1	97.4	94.3	96.2	: ☑
53	ССВ	04/28/06 11:17	99.7	102.5	100.3	98.9	100.4	99.0	
54	H3KFW	04/28/06 11:21	102.0	105.5	102.3	102.3	101.9	101.9	
55	H3KFX	04/28/06 11:24	101.8	104.8	102.1	101.5	101.6	101.1	V
56	H3KF0	04/28/06 11:28	103.1	105.3	103.5	103.4	103.0	103.2	V
57	CCV	04/28/06 11:32	93.1	99.7	97.0	98.0	94.2	96.6	V
58	ССВ	04/28/06 11:34	99.9	102.5	100.5	100.8	100.7	100.9	V

STL Sacramento ICP-MS Data Review Checklist Level I and Level II

	Met	hod 60	20				
Instrument ID	(Circle one): M01 M02	SOP S	AC-MT-	0001	į		
File Number 060426B1	16116313.1 116274 6116258 1						
Lot Numbers G6D170132, G6 G6D260199	Lot Numbers G6D170132, G6D150171, G6D210149, G6D190170, G6D260199, G6D260189, G6D260176						
1. Copy of analysis prof	rocol used included?		1				
2. ICVs & CCVs within	10% of true value or recal and rerun	?	1				
3. ICB & CCBs < repor	ting limit or recal and rerun?		V ,				
4. 10 samples or less a	nalyzed between calibration checks?						
5. All parameters withi	n linear range?		V ,				
6. LCS/LCSD within lim	its?		7				
7. Prep blank value < r	eporting limit or all samples >20x bla	ink?	1				
	ensities for samples (unless followed of the Calibration Blank intensities?	' '					
9. Appropriate dilution	factors applied to data?						
10. Matrix spike and spik	ce dup within customer defined limits	?					
11. Each batch checked	for presence of internal standard in sa	amples?					
12. Anomalies entered u	sing Clouseau?						
COMMENTS:							
	MTZ DA 27/06	TA ENTERED BY: DATE:	BRJ 4/27 k	ж			

113 of 331

Run/Project Information:				
Run Date: 04/28/06 Analyst: ANTONG Inst	trument	i: <u> </u>	5	
Prep Batches Run: 6/16305, 4/16393				
Circle Method used: 6010B 200.7: SAC-MT-0003 Rev. 2.0				
Review Items	126	1	1 31/8	2nd
A. Calibration/Instrument Run QC	Yes	No	N/A	Level
Instrument calibrated per manufacturer's instructions and at SOP specified levels?	V			
2. ICV/CCV analyzed at appropriate frequency and within control limits ? (6010B, CLP = 90 - 110%, 200.7 = 95 -105%[ICV])	V			
 ICB/CCB analyzed at appropriate frequency and within +/- RL or +/- CRDL (CLP) ? 	V			
4. CRI analyzed? (for CLP only)	V	ļ		
5. ICSA/ICSAB run at required frequency and within SOP limits?	V	<u> </u>	<u> </u>	
B. Sample Results				
Were samples with concentrations > the linear range for any parameter diluted and reanalyzed ?			V	
2. All reported results bracketed by in control QC ?	V		İ	
3. Sample analyses done within holding time ?	V		<u> </u>	
C. Preparation/Matrix QC	_			
LCS done per prep batch and within QC limits?	V.			
2. Method blank done per prep batch and < RL or CRDL (CLP) ?	V			
3. MS run at required frequency and within limits?			V	
4. MSD or DU run at required frequency and RPD within SOP limits?			V	
5. Dilution Test done per prep batch (or per SDG for CLP)?	1//			
6. Post digest spike analyzed if required (CLP only) ?	1			
D. Other			/	
Are all nonconformances documented appropriately?		T	V	
2. Current IDL/LR/IEC data on file ?	V.			
3. Calculations checked for error ?	V			
4. Transcriptions checked for error ?	V.		1	
5. All client/project specific requirements met ?	1			
6. Date/time of analysis verified as correct ?	V		1	
o. Date/fille of analysis verticed as correct:			1	
Analyst: Date: Date:				
Comments:				
<u> </u>		<u>-</u>		
	-144			
1000				
2nd Level Reviewer: Date: 1/28/06				
			<u></u>	
				

Chemist: AWong Run Date: 04/28/06

Type of Analysis: Trace ICP (AirTox)

Instrument ID: P05

Standard Expiration Dates Verified: 04/28/06

Standard Name	Standard Logbook ID
STD0 (Cal Blank) / ICB / CCB	2409-48 - 6
STD1 (Cal Std 1)	2680-11
STD2 (Cal Std 2)	2680-12
STD3 (Cal Std 3)	NA
STD4 (Cal Std 4)	NA
ICV	2680-42
ICV2	NA
PQLCRI	1750-014-6
ICSA	2680-14
ICSAB	2680-15
CCV	2680-13
Internal Standard	2696-14-4

STL Sacramento Metals Preparation Spiking Documentation Form

Lot# 660190170 EPA Analytical Spiked Date: 6010 Batch Number: 616343 Method ID: Hot Plate EPA Prep Microwave ID: MS Run #: Method ID: Observed: · Witness Initial/Date: 04 25 06 NH Hot Plate Temp Corected: Analyst Initial/Date:

Correct Folder ID Witness:

Check If Used	Bottle Name	Elements	Stock Concentration (mg/L)	Tracking Number	LCS/DCS Volume Spiked	MS/SD Volume Spiked	Expiration Date
	ICP Part 1 5% HNO ₃	Ca, Mg Al, As, Ba, Se, Sn, Tl Fe,Mo,Ti Sb,Co,Pb,Mn,Ni,V,Zn Cu Cr ,Be,Cd	5,000 200 100 50 25 20 5	Number TY 4/25/04 1774-WET-60 -17	LowL	Nla	H /2000
	ICP Part 2 2% HN0;	Ag K,Na P.S B.Li,Sr	5,000 1,000 100	1774-MFT-7	pulisho LOm L	Nla	11/2006
	Si H20/Tr HF	Si	1,000	17746 MET 7-7	j		2/2007
-	XCAL-45 5% HN0,	AI,K,Mg,Ca,Na,Fe,P,B,Si As,Be,Cd,Cr,Co,Cu,Pb, Mn,Mo,Ni,Se,U,V,Zn,Ba, Li Sa,Sr,Ti	10				
	Misc Elements	Sb,Ag,Tl				TF	4/25log

Prep Reagents: Check If Used	Reagent	Supplier	Lot Number	Check If Used	Reagent	Supplier	Lot Number
	70% HNO;	Mallinckrodt	B51037	N/W-	30% H ₂ O ₂	Mallinckrodt	N/A
NA	37% HCl	Mallinckrodt	N/b	NIV	49% HF	Fisher	NIA

ICP matrix spike and LCS: For final volumes of 100ml, add 1ml from bottles ICP Part 1, ICP Part 2. Add 1ml of Silica (Si) when requested. ICPMS matrix spike and LCS: For final volumes of 100ml, add 2ml of XCAL-45.

Amount to spike is as listed above for final volumes of 100ml. If a different final volume is used, increase or decrease the amount you spike proportionally.

STL SACRAMENTO Metals - Air Toxics - Preparation Log

Date:	25-Apr-06	Analyst: Phomsophat	Matrix: AIR

Fraction: Filter SOP: Method: ICPTRACE

LOT II	}	Worko	rder	Volume Received	Volume Removed	Initial Prep Volume	Final Prep Volume	Batch	Prep Factor
G6D260000	343	Н34FMB	2A	NA	NA	NA	100	6116343	1.2
G6D260000	343	Н34FMC	2A	NA	NA	NA	100	6116343	1.2
G6D260000	343	H34FML	2A	NA	NA	NA	100	6116343	1.2
G6D190170	1	H3KFF	2A	9	0.75	0.75	100	6116343	1.2
G6D190170	2	H3KFG	2 A	9	0.75	0.75	100	6116343	1.2
G6D190170	3	НЗКFН	2A	9	0.75	0.75	100	6116343	1.2
G6D190170	4	НЗКFJ	2A	9	0.75	0.75	100	6116343	1.2
G6D190170	5	H3KFL	2A	9	0.75	0.75	100	6116343	1.2
G6D190170	6	нзкғм	2A	9	0.75	0.75	100	6116343	1.2
G6D190170	7	НЗКГР	2A	9	0.75	0.75	100	6116343	1.2
G6D190170	8	НЗКFQ	2A	9	0.75	0.75	100	6116343	1.2
G6D190170	9	H3KFR	2A	9	0.75	0.75	100	6116343	1.2
G6D190170	10	H3KFT	2A	9	0.75	0.75	100	6116343	1.2
G6D190170	11	H3KFV	2A	9	0.75	0.75	100	6116343	1.2
G6D190170	12	H3KFW	2A	9	0.75	0.75	100	6116343	1.2
G6D 1 90170	13	НЗКFX	2A	9	0.75	0.75	100	6116343	1.2
G6D 1 90170	14	H3KF0	2A	9	0.75	0.75	100	6116343	1.2
F1685532	Blank	Filter	2A	9	0.75	0.75	100	N/A	1.2

For 1" filter: factor = 9 (9/1) For 0.75" filter factor = 12 (9/0.75)

CHEMIST INITIAL: NH

DATE OF RUN: 04/27/00

INSTRUMENT ID.: H-03
TYPE OF ANALYSIS: HS

CALIBRATION STD .: 1761-18-11

1CV STD.: 1767-18-10 CCV STD.: 1767-18-11

GGD170132, GGD190170

STL Sacramento

RUN SUMMARY

Method: CVHG - Mercury (Mercury by Cold Vapor AA) Instrument: STL2 (H03) Reported: 04/27/06 15:33:29

Sequ	ence: 2	7APR06B	Date: 04/27/	06 13:59	A	nalyst:	merrittn		ICV:	CAL/CCV:
#	Sample ID	Lot No.	Batch	Matrix	Raw	DF	Result Ur	nits %R	Analyzed Date	Comment (
1	Std01Rep1				0.00	1.0	0.00 ug/	/L	04/27/06 13:59	
	Std02Rep1	= 0.200			0.00	1.0	0.00 ug/	/L	04/27/06 14:00	
3	Std03Rep1	= 0.500			0.00	1.0	0.00 ug/	/L	04/27/06 14:02	
4	Std04Rep1	= 1.00			0.00	1.0	0.00 ug/	/L	04/27/06 14:04	
5	Std05Rep1	= 5.00			0.00	1.0	0.00 ug/	/L	04/27/06 14:05	
6	Std06Rep1	= 10.0			0.00	1.0	0.00 ug/	/L	04/27/06 14:07	
7	icv	= 2.00	[1.88	1.0	1.88 tíg/	/L 94.0%*	04/27/06 14:09	
8	ICB		:		0.01	1.0	0.01 ug/	/L	04/27/06 14:11	
9	H37E4B	G6D260000	6116310		0.00	1.0	0.00 ug/	/L	04/27/06 14:13	
10	H37E4C	G6D260000 = 1.80	6116310		1.05	1.0	0.63 ug/	/L. 35.0%	04/27/06 14:14	
11	H37E4L	G6D260000 = 1.80	6116310		1.01	1.0	0.61 ug/	/L 33.7%	04/27/06 14:16	
12	H3EVF	G6D170132-1	6116310	AIR	0.02	1.0	0.01 ug/	/L	04/27/06 14:17	
13	H3EVH	G6D170132-2	6116310	AIR	0.03	1.0	0.02 ug/	/L	04/27/06 14:19	
14	H3EVK	G6D170132-3	6116310	AiR	0.03	1.0	0.02 ug/	/L	04/27/06 14:21	
15	H3EVL	G6D170132-4	6116310	AIR	0.04	1.0	0.02 ug/	/L.	04/27/06 14:23	
16	НЗЕVM	G6D170132-5	6116310	AIR	0.03	1.0	0.02 ug/	/L	04/27/06 14:25	
17	H3EVN	G6D170132-6	6116310	AIR	0.03	1.0	0.02 ug/	/L	04/27/06 14:26	
18	H3EVQ	G6D170132-7	6116310	AIR	0.03	1.0	0.02 ug/	/L	04/27/06 14:28	
19	CCV	= 5.00			5.05	1.0	5.05 ug/	/L 101.0%	04/27/06 14:30	
20	CCB				-0.00	1.0	-0.00 ag	/L	04/27/06 14:32	
21	H3EVT	G6D170132-8	6116310	AIR	-0.00	1.0	-0.00 ug/	/L	04/27/06 14:33	
22	H3EV2	G6D170132-9	6116310	AIR	0.04	1.0	0.02 ug/	/L	04/27/06 14:35	
23	H3EV3	G6D170132-10	6116310	AIR	0.02	1.0	0.01 ug/	/L	04/27/06 14:37	
24	H3EV6	G6D170132-11	6116310	AIR	0.03	1.0	0.02 ug/	/L	04/27/06 14:38	
25	H3EV7	G6D170132-12	6116310	AIR	0.02	1.0	0.01 ug/	/L	04/27/06 14:40	
26	H3EV8	G6D170132-13	6116310	AIR	0.04	1.0	0.02 ug/	/L	04/27/06 14:42	
27	H37E8B	G6D260000 -	6116311	· · · · · · · · · · · · · · · · · · ·	0.01	1.0	0.01 ug/	/L	04/27/06 14:43	
28	H37E8C	G6D260000 = 1.80	6116311		0.99	1.0	0.60 ug/	/L 33.1%	04/27/06 14:45	
29	H37E8L	G6D260000 = 1.80	6116311		1.01	1.0	0.61 ug/	/L 33.7%	04/27/06 14:47	
30	H3KFF	G6D190170-1	6116311	AIR	0.03	1.0	0.02 ug/	/L	04/27/06 14:48	
31	CCV -	= 5.00			4.97	1.0	4.97 ag/	/L 99.4%	04/27/06 14:50	
32	CCB				-0.02	1.0	-0.02 úg/	/L	04/27/06 14:52	
33	H3KFG	G6D190170-2 *	6116311	AIR	0.02	1.0	0.01 ug/	/L	04/27/06 14:54	
	НЗКЕН	G6D190170-3	6116311	AIR	0.04	1.0			04/27/06 14:55	

48 CCV

49 CCB

= 5.00

RUN SUMMARY

<u> </u>	L Cacie	arrierito									11011 00111	917 (1 (1
Me	thod: CVHC	G - Mercury (Mercury by	Cold Vapor A/	4)		Instrument: STL2 (H03)					Reported: 04/27/06 15:33:29	
Sequ	ience:	27APR06B	Date: 04/27/	06 13:59	A	nalyst:	merrittn	<u></u>		ICV:	CAL/CCV:	
#	Sample ID	Lot No.	Batch	Matrix	Raw	DF	Result	Units	%R	Analyzed Date	Comment	Q
35	H3KFJ	G6D190170-4 -	6116311	AIR	0.03	1.0	0.02	ug/L		04/27/06 14:58		
36	H3KFL	G6D190170-5 🔨	6116311	AIR	0.01	1.0	0.01	ug/L		04/27/06 15:00		
37	НЗКЕМ	G6D190170-6	6116311	AIR	0.03	1.0	0.02	ug/L		04/27/06 15:01		
38	H3KFP	G6D190170-7*	6116311	AIR	0.04	1.0	0.02	ug/L		04/27/06 15:03		
39	H3KFQ	G6D190170-8	6116311	AIR	0.05	1.0	0.03	ug/L		04/27/06 15:05		
40	H3KFR	G6D190170-9	6116311	AIR	0.03	1.0	0.02	ug/L		04/27/06 15:06		
41	H3KFT	G6D190170-10	6116311	AIR	0.07	1.0	0.04	ug/L		04/27/06 15:08		
42	H3KFV	G6D190170-11	6116311	A!R	0.02	1.0	0.01	ug/L		04/27/06 15:10		
43	CCV	= 5.00			4.79	1.0	4.79	ug/L	95.8%	04/27/06 15:11		
44	CCB				0.02	1.0	် က	ùg/L		04/27/06 15:13		
45	H3KFW	G6D190170-12	6116311	AIR	0.04	1.0	0.02	ug/L		04/27/06 15:15		
46	H3KFX	G6D190170-13	6116311	AIR	0.05	1.0	0.03	ug/L		04/27/06 15:17		
47	H3KF0	G6D190170-14	6116311	AIR	0.02	1.0	0.01	ug/L		04/27/06 15:18		

1.0

1.0

4.79

0.00

4.79 dg/L

0.00 ug/L

95.8%

04/27/06 15:20

04/27/06 15:22

= 5.00

= 5.00

≈ 5.00

31 CCV

32 CCB 43 CCV

48

CCB

CCV

CCB 49

CALIBRATION CHECK SUMMARY

Met	ethod: CVHG - Mercury (Mercury by Cold Vapor AA)					Instrument: STL2 (H03)						Reported: 04/27/06 15:33:37	
Sequ	ence:	27APR06	В	Date: 04/27/	/06 14:09	Aı	nalyst:	merrittn			ICV:	CAL/CCV:	
#	Sample	GI	Lot No.	Batch	Matrix	Raw	DF	Result	Units	%R	Analyzed Date	Comment	Q
7	ICV	= 2.0	00			1.88	1.0	1.88	ug/L	94.0%	04/27/06 14:09		
	ICB					0.01	1.0	0.01	ug/L		04/27/06 14:11		
	ccv	= 5.0	00			5.05	1.0	5.05	ug/L	101.0%	04/27/06 14:30		
20	ССВ					-0.00	1.0	-0.00	ug/L		04/27/06 14:32		

5.05	1.0	5.05	ug/L	101.0%	04/27/06 14:30	
-0.00	1.0	-0.00	ug/L		04/27/06 14:32	
4.97	1.0	4.97	ug/L	99.4%	04/27/06 14:50	
-0.02	1.0	-0.02	ug/L		04/27/06 14:52	
4.79	1.0	4.79	ug/L	95.8%	04/27/06 15:11	
0.02	1.0	0.02	ug/L		04/27/06 15:13	
4.79	1.0	4.79	ug/L	95.8%	04/27/06 15:20	
0.00	1.0	0.00	ug/L		04/27/06 15:22	

STL Sacramento Mercury Sample Preparation Log

STL Lot Number	WO#	рН	Matrix	Wt/Vol	Final Vol.	Chemist:	merrittn	Date:	04	/27/06
0	Std1Rep1	NA	AQUEOUS	50	50	SOP#:	SAC-MT-0	005	ļ	
0.2	Std2Rep1	NA	AQUEOUS	50	50	Autoclav	e: Start Time:	9:45	End:	11:00
0.5	Std3Rep1	NA	AQUEOUS	50	50	Balance l	D: QA-007	Calib	rated:	NA
1	Std4Rep1	NA	AQUEOUS	50	50	STANDAF	RDS:			
5	Std5Rep1	NA	AQUEOUS	50	50	Initial Cal	ibration Stand	ard (ICV	<u>): </u>	
10	Std6Rep1	NA	AQUEOUS	50	50	Lot#:1767-	-18-10		Conc:	100ppb
ICV	ICV	NA	AQUEOUS	50	50	Calibration	on Stds./CCV/	Matrix S	pike/LC	SW
ICB	ICB	NA	AQUEOUS	50	50	Lot#:1767	-18-11		Conc:	100ppb
G6D260000-310	H37E4B		AQUEOUS	50	50		SOIL (0.6g/50	ml)	<u> </u>	
G6D260000-310	H37E4C		AQUEOUS	50	50		Curve/QC (ppl) {	Spike Vo	olume
G6D260000-310	H37E4L		AQUEOUS	50	50		0.0		0.0 ul	
G6D170132-1	H3EVF		Filter	0.75	50		0.2		100 ul	
G6D170132-2	H3EVH		Filter	0.75	50		0.5		250 ul	
G6D170132-3	H3EVK		Filter	0.75	50		1.0		0.5 ml	
G6D170132-4	H3EVL		Filter	0.75	50		5.0		2.5 ml	
G6D170132-5	H3EVM		Filter	0.75	50		10.0		5.0 ml	
G6D170132-6	H3EVN		Filter	0.75	50		CCV/5.0		2.5 ml	
G6D170132-7	H3EVQ		Filter	0.75	50		LCS/1.0	0.6	g/0.5 m	
G6D170132-8	H3EVT	-	Filter	0.75	50		MS/SD/3.0		1.5 ml	
G6D170132-9	H3EV2		Filter	0.75	50		ICV/2.0		1.0 ml	
G6D170132-10	H3EV3		Filter	0.75	50					
G6D170132-11	H3EV6		Filter	0.75	50		WATER (30/3	0ml) , Di	l Leach	(30/30)
G6D170132-12	H3EV7		Filter	0.75	50		STLC (3/30 m	I) , TCLI	P (6/30r	nl)
G6D170132-13	H3EV8		Filter	0.75	50		Curve/QC (pp	b) :	Spike V	olume
G6D260000-311	H37E8B		AQUEOUS	50	50		0.0		0.0 ul	.,
G6D260000-311	H37E8C		AQUEOUS	50	50		0.2		60 ul	
G6D260000-311	H37E8L		AQUEOUS	50	50		0.5		150 ul	
G6D190170-1	H3KFF		Filter	0.75	50		1.0		300 ul	
G6D190170-2	H3KFG		Filter	0.75	50		5.0		1.5 ml	
G6D190170-3	НЗКЕН		Filter	0.75	50		10.0		3.0 ml	
G6D190170-4	H3KFJ		Filter	0.75	50)	CCV/5.0		1.5 m]
G6D190170-5	H3KFL		Filter	0.75	50		LCS/1.0		300 u	<u> </u>
G6D190170-6	НЗКЕМ	1	Filter	0.75	5 50		MS/SD/1.0		300 t	11
G6D190170-7	H3KFP		Filter	0.75	5 50		iCV/2.0		600 L	ıl
G6D190170-8	НЗКЕО		Filter	0.75	5 50					
G6D190170-9	H3KFR		Filter	0.75	5 50		REAGENTS:			
G6D190170-10	H3KFT		Filter	0.75	5 50)	HNO3 Lot#: E	46024		
G6D190170-11	H3KFV		Filter	0.75	5 50		H2SO4 Lot#:	B05H10		

QA392 Rev.2/21/2003

STL Sacramento Mercury Sample Preparation Log

STL Lot Number	WO#	рН	Matrix	Wt/Vol	Final Vol.	Chemist:	merrittn	Date:	04/27/06
G6D190170-12	H3KFW		Filter	0.75	50		KMnO4 Lot# 2626-MET-34-4		
G6D190170-13	H3KFX		Filter	0.75	50		K2S2O8 Lot#	: 2626-ME	T-36-2
G6D190170-14	H3KF0		Filter	0.75	50		NaCl(NH2OH)2 2626-3	6-5:
CCV			AQUEOUS	50	50		SnCL2 Lot#:2	626-37-4	
CCV			AQUEOUS	50	50				
CCB			AQUEOUS	50	50				
CCB			AQUEOUS	50	50				

Hg Data Review Checklist

Run Date: 04/27/06 Analyst: Negrit Ins	trument	4-03	<u> </u>
Prep Batches Run: 6116310 6116311			
Circle Methods Used: 7470A / 245.1 7471 / 24			
Ay Calibration/Instrument Run QC	Yes o	los an/As	2ndLeve
1. Instrument calibrated per manufacturer's instructions and at SOP	レレ		
specified levels? 2. ICV/CCV analyzed at appropriate frequency and within control	~		/
limits? 3. ICB/CCB analyzed at appropriate frequency and within ± RL?	~		
3. ICB/CCB analyzed at appropriate requests			
8 Sample Results 1. Were samples with concentrations > the high calibration standard		1	
diluted and reanalyzed? 2. All reported results bracketed by in control QC?	V		
All reported results bracketed by in conde? Sample analyses done within holding time?	V		
3. Sample analyses dolle within holding control of the control of			
LCS done per prep batch and within QC limits?	V		
Method blank done per prep batch and < RL?	V		
a required frequency and within limits?	V		
MS run at required frequency and RPD within SOP limits? 4. MSD or DU run at required frequency and RPD within SOP limits?	U		-
D. Other			
1. Are all nonconformances documented appropriately?			
2. Current IDL/MDL data on file?	\[\lambda \]		
Current IDDIVIDE data of the: Calculations and transcriptions checked for error?	v		
Calculations and transcriptions of the second of the	V		
All client / project specific requirements Date of analysis verified as correct?	N		
Analyst: Mcaait Date:	04/2	1/06	
2 nd Level Reviewer: Date: Comments:	4/28/0	b .	

c:\temp\qa-506_hg_review1.doc

Client Sample ID: P-0591

TOTAL Metals

Lot-Sample # Date Sampled			red: 04/19/06	Matrix:	AIR
PARAMETER	RESULT	REPORTING LIMIT UNIT	'S METHOD	PREPARATION - ANALYSIS DATE	WORK ORDER #
Prep Batch # Mercury	: 6116311 0.016 B,J	0.12 ug Dilution Factor: 1	SW846 7471A MDL: 0.0003		H3KFF1A1
Prep Batch #	: 6116334				
Silver	0.026 B/	1.2 ug Dilution Factor: 1	SW846 6020	04/25-04/26/06	H3KFF1AH
Arsenic	ND	3.6 ug Dilution Factor: 1	SW846 6020	04/25-04/26/06	H3KFF1AJ
Barium	ND	120 ug Dilution Factor: 1	SW846 6020	04/25-04/26/06	H3KFF1AK
Beryllium	ND	1.2 ug Dilution Factor: 1	SW846 6020	04/25-04/26/06	H3KFF1AL
Cadmium	ND	1.2 ug Dilution Factor: 1	SW846 6020	04/25-04/26/06	H3KFF1AM
Cobalt	ND	12.0 ug Dilution Factor: 1	SW846 6020	04/25-04/26/06	H3KFF1AN
Chromium	ИD	12.0 ug Dilution Factor: 1	SW846 6020	04/25-04/26/06	H3KFF1AP
Copper	38.7/	6.0 ug Dilution Factor: 1	SW846 6020	04/25-04/26/06	H3KFF1AQ
Manganese	4.8 B	6.0 ug Dilution Factor: 1	SW846 6020	04/25-04/26/06	H3KFF1AR
Molybdenum	ND	6.0 ug Dilution Factor: 1	SW846 6020	04/25-04/26/06	H3KFF1AT
Nickel	ND	6.0 ug Dilution Factor: 1	SW846 6020	04/25-04/26/06	H3KFF1AU
Lead	1.0 В	1.2 ug Dilution Factor: 1	SW846 6020	04/25-04/26/06	H3KFF1AV

(Continued on next page)

Client Sample ID: P-0591

TOTAL Metals

Lot-Sample #...: G6D190170-001

Matrix..... AIR

		REPORTIN	1G		PREPARATION-	WORK
PARAMETER	RESULT	LIMIT	UNITS	METHOD	ANALYSIS DATE	ORDER #
Selenium	ND	3.6	ug	SW846 6020	04/25-04/26/06	H3KFF1AW
		Dilution Fac	etor: 1	MDL 1.7		
Vanadium	3.2 B, J/	12.0	ug	SW846 6020	04/25-04/26/06	H3KFF1AX
		Dilution Fac	tor: 1	MDL 2.9		
Zinc	ND	24.0	ug	SW846 6020	04/25-04/26/06	H3KFF1A0
		Dilution Fac	tor: 1	MDL 6.2		
Prep Batch #.	: 6116343					
Aluminum	103 B 🗸	240	ug	SW846 6010B	04/25-04/28/06	H3KFF1AC
		Dilution Fac	tor: 1	MDL 40.8		
Calcium	ND	3000	ug	SW846 6010B	04/25-04/28/06	H3KFF1AD
		Dilution Fac	tor: 1	MDL 898		
Iron	128	120	ug	SW846 6010B	04/25-04/28/06	H3KFF1AE
	•	Dilution Fac	tor: 1	MDL		
Magnesium	110 в 🖊	600	ug	SW846 6010B	04/25-04/28/06	H3KFF1AF
		Dilution Fac	tor: 1	MDL 97.2		
Sodium	ND	6000	ug	SW846 6010B	04/25-04/28/06	H3KFF1AG
		Dilution Fac	tor: 1	MDL 2020		
NOTE (S):						

B Estimated result. Result is less than RL.

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: P-0592

TOTAL Metals

REPORTING LIMIT UNITS METHOD MANALYSIS DATE METHOD MANALYSIS DATE METHOD MANALYSIS DATE METHOD MANALYSIS DATE METHOD MANALYSIS DATE METHOD MANALYSIS DATE METHOD MANALYSIS DATE METHOD MANALYSIS DATE METHOD MANALYSIS DATE	Lot-Sample # Date Sampled	Matrix:	AIR			
Prep Batch #: 6116311 0.12 ug Dilution Factor: 1 SW846 7471A MDL			REPORTING		PREPARATION-	WORK
Mercury 0.011 B,J 0.12 ug pilution Factor: 1 SW846 7471A MDL 0.4/27/06 H3KFG1AC H3KFG1AC Prep Batch #: 6116334 silver 1.2 ug Dilution Factor: 1 SW846 6020 MDL 0.014 0.04/25-04/26/06 H3KFG1AK Arsenic ND 3.6 ug SW846 6020 MDL 0.014 0.04/25-04/26/06 H3KFG1AK Barium ND 120 ug SW846 6020 MDL 0.04/25-04/26/06 H3KFG1AM MDL 0.04/25-04/26/06 H3KFG1AM MDL Beryllium ND 1.2 ug SW846 6020 MDL 0.0084 0.0084 Cadmium ND 1.2 ug SW846 6020 MDL 0.0084 0.004/25-04/26/06 H3KFG1AP MDL Cobalt ND 1.2 ug SW846 6020 MDL 0.054 0.054 0.054 Chromium ND 12.0 ug Dilution Factor: 1 MDL 0.054 0.04/25-04/26/06 H3KFG1AP MDL Chromium ND 12.0 ug Dilution Factor: 1 MDL 0.054 0.04/25-04/26/06 H3KFG1AR MDL Copper 49.4 6.0 ug SW846 6020 MDL 0.04/25-04/26/06 H3KFG1AR MDL 0.054	PARAMETER	RESULT	LIMIT UNIT	rs <u>method</u>	ANALYSIS DATE	ORDER #
Mercury 0.011 B,J 0.12 ug pilution Factor: 1 SW846 7471A MDL 0.4/27/06 H3KFG1AC H3KFG1AC Prep Batch #: 6116334 silver 1.2 ug Dilution Factor: 1 SW846 6020 MDL 0.014 0.04/25-04/26/06 H3KFG1AK Arsenic ND 3.6 ug SW846 6020 MDL 0.014 0.04/25-04/26/06 H3KFG1AK Barium ND 120 ug SW846 6020 MDL 0.04/25-04/26/06 H3KFG1AM MDL 0.04/25-04/26/06 H3KFG1AM MDL Beryllium ND 1.2 ug SW846 6020 MDL 0.0084 0.0084 Cadmium ND 1.2 ug SW846 6020 MDL 0.0084 0.004/25-04/26/06 H3KFG1AP MDL Cobalt ND 1.2 ug SW846 6020 MDL 0.054 0.054 0.054 Chromium ND 12.0 ug Dilution Factor: 1 MDL 0.054 0.04/25-04/26/06 H3KFG1AP MDL Chromium ND 12.0 ug Dilution Factor: 1 MDL 0.054 0.04/25-04/26/06 H3KFG1AR MDL Copper 49.4 6.0 ug SW846 6020 MDL 0.04/25-04/26/06 H3KFG1AR MDL 0.054	Prop Batch #	• 6116311				
Prep Batch #: 6116334 Silver 1.2 ug Dilution Factor: 1 SW846 6020 MDL	-	and the second s	0.12 ug	SW846 7471A	04/27/06	H3KFG1AC
Silver 0.025 B/ 1.2 ug Dilution Factor: 1 SW846 6020 MDL	-	-	Dilution Factor: 1	MDL 0.0003	6	
Silver 0.025 B/ 1.2 ug Dilution Factor: 1 SW846 6020 MDL						
Silver 0.025 B/ 1.2 ug Dilution Factor: 1 SW846 6020 MDL	Dren Ratch #	• 6116334				
Arsenic ND 3.6 ug SW846 6020 04/25-04/26/06 H3KFG1AL Dilution Factor: 1 MDL			1.2 ug	SW846 6020	04/25-04/26/06	H3KFGLAK
Dilution Factor: 1 MDL			Dilution Factor: 1	MDL 0.014		
Dilution Factor: 1 MDL						
Barium ND 120 ug SW846 6020 04/25-04/26/06 H3KFG1AM Dilution Factor: 1 MDL	Arsenic	ND	9		04/25-04/26/06	H3KFG1AL
Dilution Factor: 1 MDL			Dilution Factor: 1	MDL 1.9		
Dilution Factor: 1 MDL	Barium	ND	120 ug	SW846 6020	04/25-04/26/06	H3KFG1AM
Dilution Factor: 1 MDL 0.0084 Cadmium ND 1.2 ug SW846 6020 04/25-04/26/06 H3KFG1AP Dilution Factor: 1 MDL 0.054 Cobalt ND 12.0 ug SW846 6020 04/25-04/26/06 H3KFG1AQ Dilution Factor: 1 MDL 3.7 Chromium ND 12.0 ug SW846 6020 04/25-04/26/06 H3KFG1AR Dilution Factor: 1 MDL 10.3 Copper 49.4 6.0 ug SW846 6020 04/25-04/26/06 H3KFG1AT			J		, , ,	
Dilution Factor: 1 MDL 0.0084 Cadmium ND 1.2 ug SW846 6020 04/25-04/26/06 H3KFG1AP Dilution Factor: 1 MDL 0.054 Cobalt ND 12.0 ug SW846 6020 04/25-04/26/06 H3KFG1AQ Dilution Factor: 1 MDL 3.7 Chromium ND 12.0 ug SW846 6020 04/25-04/26/06 H3KFG1AR Dilution Factor: 1 MDL 10.3 Copper 49.4 6.0 ug SW846 6020 04/25-04/26/06 H3KFG1AT						
Cadmium ND 1.2 ug SW846 6020 04/25-04/26/06 H3KFG1AP MDL	Beryllium	ND	5			H3KFG1AN
Dilution Factor: 1 MDL: 0.054 Cobalt ND 12.0 ug SW846 6020 04/25-04/26/06 H3KFG1AQ Dilution Factor: 1 MDL: 3.7 Chromium ND 12.0 ug SW846 6020 04/25-04/26/06 H3KFG1AR Dilution Factor: 1 MDL: 10.3 Copper 49.4 6.0 ug SW846 6020 04/25-04/26/06 H3KFG1AT			Dilution Factor: 1	MDL 0.0084		
Dilution Factor: 1 MDL: 0.054 Cobalt ND 12.0 ug SW846 6020 04/25-04/26/06 H3KFG1AQ Dilution Factor: 1 MDL: 3.7 Chromium ND 12.0 ug SW846 6020 04/25-04/26/06 H3KFG1AR Dilution Factor: 1 MDL: 10.3 Copper 49.4 6.0 ug SW846 6020 04/25-04/26/06 H3KFG1AT	Cadmium	NID	1 2 110	SW846 6020	04/25-04/26/06	H3KFG1AP
Dilution Factor: 1 MDL: 3.7 Chromium ND 12.0 ug SW846 6020 04/25-04/26/06 H3KFG1AR Dilution Factor: 1 MDL: 10.3 Copper 49.4 6.0 ug SW846 6020 04/25-04/26/06 H3KFG1AT	CCCIIIL CIII	112	5		v = / = c / c c	
Dilution Factor: 1 MDL: 3.7 Chromium ND 12.0 ug SW846 6020 04/25-04/26/06 H3KFG1AR Dilution Factor: 1 MDL: 10.3 Copper 49.4 6.0 ug SW846 6020 04/25-04/26/06 H3KFG1AT						
Chromium ND 12.0 ug SW845 6020 04/25-04/26/06 H3KFG1AR Dilution Factor: 1 MDL 10.3 Copper 49.4 6.0 ug SW846 6020 04/25-04/26/06 H3KFG1AT	Cobalt	ND	12.0 ug	SW846 6020	04/25-04/26/06	H3KFG1AQ
Dilution Factor: 1 MDL 10.3 Copper 49.4 6.0 ug SW846 6020 04/25-04/26/06 H3KFGLAT			Dilution Factor: 1	MDL 3.7		
Dilution Factor: 1 MDL 10.3 Copper 49.4 6.0 ug SW846 6020 04/25-04/26/06 H3KFGLAT	Chromium	NID	12 0 ug	SMB4E ED20	04/25-04/26/06	HSKFGIAR
Copper 49.4 6.0 ug SW846 6020 04/25-04/26/06 H3KFGlAT	CITOMITUM	ND			01/23 01/20/00	
copper 13.2						
Dilution Factor: 1 MDL	Copper	49.4	6.0 ug		04/25-04/26/06	H3KFGLAT
			Dilution Factor: 1	MDL 2.9		
Manganese 5.9 B 6.0 uq SW846 6020 04/25-04/26/06 H3KFGLAU	Manganege	5 9 B	6.0 na	SW846 6020	04/25-04/26/06	H3KFG1AU
Manganese 5.9 B 6.0 ug SW846 6020 04/25-04/26/06 H3KFGIAU Dilution Factor: 1 MDL	Manganese	3.3 B			01,10 01,10,00	
Molybdenum ND 6.0 ug SW846 6020 04/25-04/26/06 H3KFGlAV	Molybdenum	ND	6.0 ug	SW846 6020	04/25-04/26/06	H3KFG1AV
Dilution Factor: 1 MDL 1.1			Dilution Factor: 1	MDL: 1.1		
Nickel ND 6.0 ug SW846 6020 04/25-04/26/06 H3KFG1AW	NY J _ 3 3	NIO	6.0 110	GM846 6020	04/25-04/26/06	H3KFG1AW
Nickel ND 6.0 ug SW846 6020 04/25-04/26/06 H3KFGIAW Dilution Factor: 1 MDL	Nicker	ИП	-		01,23 01,20,00	1101111 021111
		,				
Lead 1.2 ug SW846 6020 04/25-04/26/06 H3KFGLAX	Lead	1.2	1.2 ug	SW846 6020	04/25-04/26/06	H3KFG1AX
Dilution Factor: 1 MDL 0.34			Dilution Factor: 1	MDL 0.34		

(Continued on next page)

Client Sample ID: P-0592

TOTAL Metals

Lot-Sample #...: G6D190170-002

Matrix..... AIR

		REPORTING			PREPARATION-	WORK
PARAMETER	RESULT	LIMIT	UNITS	METHOD	ANALYSIS DATE	ORDER #
Selenium	ND	3.6	ug	SW846 6020	04/25-04/26/06	H3KFG1A0
		Dilution Factor: 1		MDL 1.7		
Vanadium	3.3 B,J /	12.0	ug	SW846 6020	04/25-04/26/06	H3KFG1A1
		Dilution Fac	ctor: 1	MDL 2.9		
Zinc	ND	24.0	ug	SW846 6020	04/25-04/26/06	H3KFG1AA
		Dilution Fac	ctor: 1	MDL 6.2		
Prep Batch #	.: 6116343					
Aluminum	110 B	240	ug	SW846 6010B	04/25-04/28/06	H3KFG1AE
	•	Dilution Fa	ctor: 1	MDL: 40.8		
Calcium	ИD	3000	ug	SW846 6010B	04/25-04/28/06	H3KFG1AF
		Dilution Fa	ctor: 1	MDL 898		
Iron	132	120	uq	SW846 6010B	04/25-04/28/06	H3KFG1AG
		Dilution Fa	ctor: 1	MDL: 14.4		
Magnesium	109 B	600	яg	SW846 6010B	04/25-04/28/06	II3KFG1AH
		Dilution Fa	ctor: 1	MDL 97.2		
Sodium	ND	6000	ug	SW846 6010B	04/25-04/28/06	H3KFG1AJ
		Dilution Fa	ctor: 1	MDL 2020		

NOTE (S):

B Estimated result. Result is less than RL.

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: P-0593

TOTAL Metals

Lot-Sample #: G6D190170-003 Matrix: AIR Date Sampled: 04/14/06 Date Received: 04/19/06						
PARAMETER	RESULT	REPORTING LIMIT	UNITS	METHOD	PREPARATION- ANALYSIS DATE	WORK ORDER #
Prep Batch # Mercury	.: 6116311 0.024 B,J ~	0.12 Dilution Factor	ug	SW846 7471A MDL 0.0003	• •	нзкентас
Prep Batch #	: 6116334					
Silver	0.033 B	1.2 Dilution Factor	ug :: 1	SW846 6020 MDL 0.014	04/25-04/26/06	нзкентак
Arsenic	ND	3.6 Dilution Factor	ug :: 1	SW846 6020	04/25-04/26/06	H3KFH1AL
Barium	ND	120 Dilution Factor	ug :: 1	SW846 6020	04/25-04/26/06	H3KFH1AM
Beryllium	0.015 B	1.2 Dilution Factor	ug	SW846 6020	, , ,	H3KFH1AN
Cadmium	ND	1.2 Dilution Factor	ug :: 1	SW846 6020	04/25-04/26/06	нзкғніар
Cobalt	ND	12.0 Dilution Factor	ug :: 1	SW846 6020	04/25-04/26/06	H3KFH1AQ
Chromium	ND	12.0 Dilution Factor	ug :: 1	SW846 6020	04/25-04/26/06	H3KFH1AR
Copper	52.2	6.0 Dilution Factor	ug :: 1	SW846 6020 MDL 2.9	04/25-04/26/06	нзкуніат
Manganese	5.4 B (6.0 Dilution Factor	11 g :: 2	SW846 6020	04/25-04/26/06	H3KFH1AU
Molybdenum	ND	6.0 Dilution Factor	ug :: 1	SW846 6020	04/25-04/26/06	H3KFH1AV
Nickel	ND	6.0 Dilution Factor	ug :: 1	SW846 6020	04/25-04/26/06	H3KFH1AW
Lead	1.2	1.2 Dilution Factor	ug :: 1	SW846 6020	04/25-04/26/06	нзкентах

(Continued on next page)

Client Sample ID: P-0593

TOTAL Metals

Lot-Sample #...: G6D190170-003

Matrix..... AIR

		REPORTING			PREPARATION-	WORK
PARAMETER	RESULT	LIMIT	UNITS	METHOD	ANALYSIS DATE	ORDER #
Selenium	ND	3.6	ug	SW846 6020	04/25-04/26/06	H3KFH1A0
		Dilution Fac	tor: 1	MDL 1.7		
Vanadium	3.1 B,J	12.0	ug	SW846 6020	04/25-04/26/06	H3KFH1A1
		Dilution Fac	tor: 1	MDL 2.9		
Zinc	ND	24,0	ug	SW846 6020	04/25-04/26/06	H3KFH1AA
		Dilution Fac	tor: 1	MDL 6.2		
Prep Batch #	.: 6116343					
Aluminum	123 B	240	ug	SW846 6010B	04/25-04/28/06	H3KFH1AE
	,	Dilution Fac	tor: 1	MDL 40.8		
Calcium	ND	3000	ug	SW846 6010B	04/25-04/28/06	H3KFH1AF
		Dilution Fac	tor: 1	MDL 898		
Iron	155 🗸	120	ug	SW846 6010B	04/25-04/28/06	H3KFH1AG
		Dilution Fac	tor: 1	MDL 14.4		
Magnesium	149 B	600	ug	SW846 6010B	04/25-04/28/06	нзкғніан
· · · · ·		Dilution Fac	tor: 1	MDL 97.2		
Sodium	ИD	6000	ug	SW846 6010B	04/25-04/28/06	H3KFH1AJ
		Dilution Fac	tor: 1	MDL 2020		

B Estimated result. Result is less than RL.

NOTE(S):

J. Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: P-0594

TOTAL Metals

Lot-Sample #: G6D190170-004		Matrix: AIR
Date Sampled: 04/14/06	Date Received: 04/19/06	

PARAMETER	RESULT	REPORTING LIMIT	UNITS	METHOD	PREPARATION- ANALYSIS DATE	WORK ORDER #
Prep Batch # Mercury	: 6116311 0.016 B,J	0.12 Dilution Factor	ug r: 1	SW846 7471A MDL	• •	H3KFJ1AC
Prep Batch # Silver	: 6116334 0.039 B	1.2 Dilution Factor	ug r: 1	SW846 6020 MDL 0.014	04/25-04/26/06	нзкрујак
Arsenic	ND	3.6 Dilution Factor	ug r: 1	SW846 6020	04/25-04/26/06	H3KFJ1AL
Barium	ИД	120 Dilution Factor	ug r: 1	SW846 6020	04/25-04/26/06	H3KFJ1AM
Beryllium	ND	1.2 Dilution Factor	ug r: 1	SW846 6020	04/25-04/26/06	H3KFJ1AN
Cadmium	ND	1.2 Dilution Factor	ug r: 1	SW846 6020	04/25-04/26/06	H3KFJ1AP
Cobalt	ND	12.0 Dilution Factor	ug r: 1	SW846 6020	04/25-04/26/06	H3KFJ1AQ
Chromium	ND	12.0 Dilution Factor	ug r: 1	SW846 6020	04/25-04/26/06	H3KFJ1AR
Copper	61.2	6.0 Dilution Factor	ug r: 1	SW846 6020	04/25-04/26/06	H3KFJ1AT
Manganese	6.4	6.0 Dilution Factor	ug r: 1	SW846 6020 MDL	04/25-04/26/06	H3KFJ1AU
Molybdenum	ND	6.0 Dilution Factor	ug r: 1	SW846 6020	04/25-04/26/06	H3KFJ1AV
Nickel	ND	6.0 Dilution Factor	ug r: l	SW846 6020	04/25-04/26/06	H3KFJ1AW
Lead	1.3	1.2 Dilution Factor	ug r: 1	SW846 6020 MDL 0.34	04/25-04/26/06	H3KFJ1AX

Client Sample ID: P-0594

TOTAL Metals

Lot-Sample #...: G6D190170-004

		REPORTING	3		PREPARATION-	WORK
PARAMETER	RESULT	LIMIT	UNITS	METHOD	ANALYSIS DATE	ORDER #
Selenium	ND	3.6	ug	SW846 6020	04/25-04/26/06	H3KFJ1A0
		Dilution Fact	or: 1	MDL 1.7		
Vanadium	3.3 B,J /	12.0	ug	SW846 6020	04/25-04/26/06	H3KFJ1A1
		Dilution Fact	or: 1	MDL 2.9		
Zinc	ND	24.0	ug	SW846 6020	04/25-04/26/06	H3KFJ1AA
		Dilution Fact	or: 1	MDL 6.2		
Prep Batch #	: 6116343					
Aluminum	1.29 B	240	ug	SW846 6010B	04/25-04/28/06	H3KFJ1AE
		Dilution Fact	or: 1	MDL 40.8		
Calcium	ND	3000	ug	SW846 6010B	04/25-04/28/06	H3KFJ1AF
		Dilution Fact	or: 1	MDL 898		
Iron	174 📈	1.20	ug	SW846 6010B	04/25-04/28/06	H3KFJ1AG
	·	Dilution Fact	or: 1	MDI 14.4		
Magnesium	127 B	600	ug	SW846 6010B	04/25-04/28/06	нзкејјан
3		Dilution Fact	or: 1	MDL 97.2		
Sodium	ND	6000	ug	SW846 6010B	04/25-04/28/06	H3KFJ1AJ
		Dilution Fact	or: 1	MDL 2020		

NOTE (S):

B Estimated result. Result is less than RL.

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: P-0595

TOTAL Metals

Lot-Sample # Date Sampled			d: 04/19/06	Matrix:	AIR
PARAMETER	RESULT	REPORTING LIMIT UNITS	METHOD	PREPARATION- ANALYSIS DATE	WORK ORDER #
Prep Batch #	: 6116311 0.0066 B,J	0.12 ug Dilution Factor: 1	SW846 7471A		H3KFL1AC
		DITUCION FACCOI: 1	MDD	90	
Prep Batch #	- 6316334				
Silver	0.027 B	1.2 ug	SW846 6020	04/25-04/26/06	H3KFL1AK
		Dilution Factor: 1	MDL 0.014		
Arsenic	ND	3.6 ug	SW846 6020	04/25-04/26/06	H3KFL1AL
		Dilution Factor: 1	MDL 1.9		
Barium	ND	120 ug	SW846 6020	04/25-04/26/06	H3KFL1AM
DOL LUM	112	Dilution Factor: 1	MDL 34.8	,,,	
Downliam	ND	1.2 ug	SW846 6020	04/25-04/26/06	HAKET.1AM
Beryllium	ND	1.2 ug Dilution Factor: 1	MDL 0.0084		IISKI LIA.
Cadmium	ND	1.2 ug Dilution Factor: 1	SW846 6020	04/25-04/26/06	H3KFLIAP
		DIIIGION TAGGOT.	1,221.11,11.11.11.11.11.11.11.11.11.11.11.11		
Cobalt	ND	12.0 ug	SW846 6020	04/25-04/26/06	H3KFL1AQ
		Dilution Factor: 1	MDL 3.7		
Chromium	ND	12.0 ug	SW846 6020	04/25-04/26/06	H3KFL1AR
		Dilution Factor: 1	MDL 10.3		
Copper	29.8	6.0 ug	SW846 6020	04/25-04/26/06	II3KFL1AT
- ~		Dilution Factor: 1	MDL 2.9		
Manganese	5.7 B ×	6.0 uq	SW846 6020	04/25-04/26/06	H3KFL1AU
radigarese	2 27	Dilucion Factor: 1	MDL 1.9	, - , , , , ,	
** - 121	W	C 0 227	SW846 6020	04/25-04/26/06	על גבון זאט
Molybdenum	ND	6.0 ug Dilution Factor: 1	MDI, 1.1	04/25 04/20/00	HORE BINV
Nickel	ИD	6.0 ug	SW846 6020 MDL 3.5	04/25-04/26/06	H3KFL1AW
		Dilution Factor: 1	иш <u>ы,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>		
Lead	1.3	1.2 ug	SW846 6020	04/25-04/26/06	H3KFL1AX
		Dilution Factor: 1	MDL 0.34		

Client Sample ID: P-0595

TOTAL Metals

Lot-Sample #...: G6D190170-005

		REPORTIN	G		PREPARATION-	WORK
PARAMETER	RESULT	LIMIT	UNITS	METHOD	ANALYSIS DATE	ORDER #
Selenium	MD	3.6	ug	SW846 6020	04/25-04/26/06	H3KFL1A0
		Dilution Fac	tor: 1	MDL 1.7		
Vanadium	3.2 B,J	12.0	ug	SW846 6020	04/25-04/26/06	H3KFL1A1
		Dilution Fac	tor: 1	MDL 2.9		
Zinc	ND	24.0	ug	SW846 6020	04/25-04/26/06	H3KFL1AA
		Dilution Fac	tor: 1	MDL 6.2		
Prep Batch #	.: 6116343					
Aluminum	124 B	240	ug	SW846 6010B	04/25-04/28/06	H3KFL1AE
	•	Dilution Fac	tor: 1	MDI 40.8		
Calcium	ND	3000	ug	SW846 6010B	04/25-04/28/06	H3KFL1AF
		Dilution Fac	tor: 1	MDL 898		
Iron	150	120	uq	SW846 6010B	04/25-04/28/06	H3KFL1AG
J. J. C/AA		Dilution Fac	tor: 1	MDL 14.4		
Magnesium	123 B	600	uq	SW846 6010B	04/25-04/28/06	H3KFL1AH
magnesium	123 B	Dilution Fac		MDL 97.2		
					04/05 04/00/06	מאר זקער מאר
Sodium	ND	6000	ug	SW846 6010B	04/25-04/28/06	DAINIAYCU
		Dilution Fac	tor: 1	MDL 2020		

NOTE (S):

B Estimated result. Result is less than RL.

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: P-0596

TOTAL Metals

Lot-Sample # Date Sampled		006 Date Received.	.: 04/19/06	Matrix:	AIR
PARAMETER	RESULT	REPORTING LIMIT UNITS	METHOD	PREPARATION- ANALYSIS DATE	WORK ORDER #
Prep Batch # Mercury	.: 6116311 0.019 B,J	0.12 ug Dilution Factor: 1	SW846 7471A		нзк гм 1АС
Prep Batch #	: 6116334				
Silver	0.029 B	1.2 ug Dilution Factor: 1	SW846 6020 MDL 0.014	04/25-04/26/06	H3KFM1AK
Arsenic	ND	3.6 ug Dilution Factor: 1	SW846 6020	04/25-04/26/06	H3KFM1AL
Barium	ND	120 ug Dilution Factor: 1	SW846 6020	04/25-04/26/06	H3KFMlAM
Beryllium	0.012 B	1.2 ug Dilution Factor: 1	SW846 6020	04/25-04/26/06	H3KFM1AN
Cadmium	ND	1.2 ug Dilution Factor: 1	SW846 6020	04/25-04/26/06	НЗКГМ1А Р
Cobalt	ND	12.0 ug Dilution Factor: 1	SW846 6020	04/25-04/26/06	H3KFM1AQ
Chromium	ND	12.0 ug Dilution Factor: 1	SW846 6020	04/25-04/26/06	H3KFM1AR
Copper	35.5 🛩	6.0 ug Dilution Factor: 1	SW846 6020	04/25-04/26/06	нзкумлат
Manganese	5.7 B	6.0 ug Dilution Factor: 1	SW846 6020	04/25-04/26/06	H3KFM1AU
Molybdenum	ND	6.0 ug Dilution Factor: 1	SW846 6020	04/25-04/26/06	H3KFM1AV
Nickel	NĐ	6.0 ug Dilution Factor: 1	SW846 6020	04/25-04/26/06	H3KFM1AW
Lead	1.1 B,	1.2 ug Dilution Factor: 1	SW846 6020	04/25-04/26/06	H3KFM1AX

Client Sample ID: P-0596

TOTAL Metals

Lot-Sample #...: G6D190170-006

		REPORTI	NG		PREPARATION-	WORK
PARAMETER	RESULT	LIMIT	UNITS	METHOD	ANALYSIS DATE	ORDER #
Selenium	ND	3.6	ug	SW846 6020	04/25-04/26/06	H3KFM1A0
		Dilution Fac	ctor: 1	MDL 1,7		
Vanadium	3.1 B,J	12.0	ug	SW846 6020	04/25-04/26/06	H3KFM1A1
		Dilution Fac	ctor: 1	MDL 2.9		
Zinc	ND	24.0	ug	SW846 6020	04/25-04/26/06	нзкғміал
		Dilution Fac	ctor: 1	MDL: 6.2		
Prep Batch #.	: 6116343					
Aluminum	126 B	240	ug	SW846 6010B	04/25-04/28/06	H3KFMLAE
		Dilution Fac	ctor: 1	MDL 40.8		
Calcium	ND	3000	ug	SW846 6010B	04/25-04/28/06	H3KFM1AF
		Dilution Fac	ctor: 1	MDL 898		

Iron	147	120	ug	SW846 6010B	04/25-04/28/06	H3KFMLAG
		Dilution Fac	ctor: 1	MDL, 14.4		
Magnesium	122 B	600	ug	SW846 6010B	04/25-04/28/06	нзк гм 1Ан
		Dilution Fa	ctor: 1	MDL 97.2		
Sodium	ND	6000	ug	SW846 6010B	04/25-04/28/06	H3KFM1AJ
		Dilution Fac	ctor: 1	MDL 2020		

NOTE (S):

B Estimated result. Result is less than RL.

³ Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: P-0597

TOTAL Metals

Lot-Sample # Date Sampled		007 Date Received	: 04/19/06	Matrix:	AIR
PARAMETER	RESULT	REPORTING LIMIT UNITS	METHOD	PREPARATION- ANALYSIS DATE	WORK ORDER #
Prep Batch # Mercury	: 6116311 0.024 B,J	0.12 ug Dilution Factor: 1	SW846 7471A	· ·	нзкғріас
Prep Batch #	: 6116334				
Silver	0.043 B	1.2 ug Dilution Factor: 1	SW846 6020	04/25-04/26/06	H3KFP1AK
Arsenic	ND	3.6 ug Dilution Factor: 1	SW846 6020	04/25-04/26/06	H3KFP1AL
Barium	ND	120 ug Dilution Factor: 1	SW846 6020	04/25-04/26/06	H3KFP1AM
Beryllium	ИD	1.2 ug Dilution Factor: 1	SW846 6020	04/25-04/26/06	H3KFP1AN
Cadmium	ND	1.2 ug Dilution Factor: 1	SW846 6020	04/25-04/26/06	нзкғр1АР
Cobalt	ND	12.0 ug Dilution Factor: 1	SW846 6020	04/25-04/26/06	H3KFP1AQ
Chromium	ND	12.0 ug Dilution Factor: 1	SW846 6020	04/25-04/26/06	H3KFP1AR
Copper	56. 5	6.0 ug Dilution Factor: 1	SW846 6020	04/25-04/26/06	нзкгр1ЛТ
Manganese	5.3 B	6.0 ug Dilution Factor: 1	SW846 6020	04/25-04/26/06	H3KFP1AU
Molybdenum	ND	6.0 ug Dilution Factor: 1	SW846 6020	04/25-04/26/06	H3KFP1AV
Nickel	ИD	6.0 ug Dilution Factor: 1	SW846 6020	04/25-04/26/06	H3KFP1AW
Lead	1.2	J2 ug Dilution Factor: 1	SW846 6020	04/25-04/26/06	H3KFP1AX

Client Sample ID: P-0597

TOTAL Metals

Lot-Sample #...: G6D190170-007

		REPORTIN	G		PREPARATION-	WORK
PARAMETER	RESULT	I,IMIT	UNITS	METHOD	ANALYSIS DATE	ORDER #
Selenium	ND	3.6	ug	SW846 6020	04/25-04/26/06	H3KFP1A0
		Dilution Fact	or: 1	MDL 1.7		
Vanadium	3.2 B, J	12.0	ug	SW846 6020	04/25-04/26/06	H3KFP1A1
		Dilution Fact	or: 1	MDL 2.9		
Zinc	ND	24.0	ug	SW846 6020	04/25-04/26/06	H3KFP1AA
		Dilution Fact	or: 1	MDL 6.2		
Prep Batch #	.: 6116343					
Aluminum	111 B 📝	240	пд	SW846 6010B	04/25-04/28/06	H3KFP1AE
		Dilution Fact	tor: 1	MDL 40.8		
Calcium	ND	3000	ug	SW846 6010B	04/25-04/28/06	H3KFP1AF
		Dilution Fact	tor: 1	MDL 898		
Iron	157	120	ug	SW846 6010B	04/25-04/28/06	H3KFP1AG
		Dilution Fact	tor: 1	MDL 14,4		
Magnesium	106 B	600	uq	SW846 6010B	04/25-04/28/06	НЗКРР1АН
• • • • • • • • • • • • • • • • • • •		Dilution Fact	tor: 1	MDL 97.2		
Sodium	ND	6000	ug	SW846 6010B	04/25-04/28/06	H3KFP1AJ
Co special special		Dilution Fact	•	MDL, 2020		

NOTE (S):

B Estimated result. Result is less than RL.

F. Method blank contamination. The associated method blank contains the target analyte at a reportable level,

Client Sample ID: 000423

TOTAL Metals

Lot-Sample # Date Sampled		008 Date Received.	.: 04/19/06	Matrix:	AIR
PARAMETER	RESULT	REPORTING LIMIT UNITS	METHOD	PREPARATION - ANALYSIS DATE	WORK ORDER #
Prep Batch # Mercury	: 6116311 0.032 B,J	0.12 ug Dilution Factor: 1	SW846 7471A		нзкғолал
Prep Batch #	.: 6116334 0.23 B	1.2 ug Dilution Factor: 1	SW846 6020	04/25-04/26/06	нзкројан
Arsenic	ND	3.6 ug Dilution Factor: 1	SW846 6020	04/25-04/26/06	H3KFQ1AJ
Barium	ND	120 ug Dilution Factor: 1	SW846 6020	04/25-04/26/06	H3KFQ1AK
Beryllium	0.020 B	1.2 ug Dilution Factor: 1	SW846 6020	04/25-04/26/06	H3KFQ1AL
Cadmium	ND	1.2 ug Dilution Factor: 1	SW846 6020	04/25-04/26/06	H3KFQ1AM
Cobalt	ND	12.0 ug Dilution Factor: 1	SW846 6020	04/25-04/26/06	H3KFQ1AN
Chromium	ИD	12.0 ug Dilution Factor: 1	SW846 6020	04/25-04/26/06	H3KFQ1AP
Copper	449 💉	6.0 ug Dilution Factor: 1	SW846 6020	04/25-04/26/06	H3KFQLAQ
Manganese	14.6	6.0 ug Dilution Factor: 1	SW846 6020	04/25-04/26/06	H3KFQ1AR
Molybdenum	ND	6.0 ug Dilution Factor: 1	SW846 6020	04/25-04/26/06	H3KFQ1AT
Nickel	ND	6.0 ug Dilution Factor: 1	SW846 6020 MDL 3.5	04/25-04/26/06	H3KFQ1AU
Lead	2.0	1.2 ug	SW846 6020	04/25-04/26/06	H3KFQLAV

(Continued on next page)

Dilution Factor: 1 MDL..... 0.34

Client Sample ID: 000423

TOTAL Metals

Lot-Sample #...: G6D190170-008

		REPORTIN	ıG		PREPARATION-	WORK
PARAMETER	RESULT	LIMIT	UNITS	METHOD	ANALYSIS DATE	ORDER #
Selenium	ND	3.6	ug	SW846 6020	04/25-04/26/06	H3KFQ1AW
		Dilution Fac	tor: 1	MDL 1.7		
Vanadium	3.7 B,J	12.0	ug	SW846 6020	04/25-04/26/06	H3KFQ1AX
		Dilution Fac	tor: 1	MDL 2.9		
Zinc	ND	24.0	ug	SW846 6020	04/25-04/26/06	H3KFQ1A0
		Dilution Fac	tor: 1	MDL 6.2		
Prep Batch #	.: 6116343					
Aluminum	370 /	240	ug	SW846 6010B	04/25-04/28/06	H3KFQ1AC
		Dilution Fac	tor: 1	MDL 40.8		
Calcium	ND	3000	ug	SW846 6010B	04/25-04/28/06	H3KFQ1AD
		Dilution Fac	tor: 1	MDL 898		
Iron	454	120	ug	SW846 6010B	04/25-04/28/06	H3KFQ1AE
		Dilution Fac	tor: 1	MDL 14.4		
Magnesium	276 B	600	ug	SW846 6010B	04/25-04/28/06	H3KFQ1AF
J		Dilution Fac	etor: 1	MDL 97.2		
Sodium	ND	6000	ug	SW846 6010B	04/25-04/28/06	H3KFQ1AG
		Dilution Fac	tor: 1	MDL 2020		

B Estimated result. Result is less than RL.

J. Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: 000424

TOTAL Metals

Lot-Sample # Date Sampled		009 Date Received	: 04/19/06	Matrix:	AIR
PARAMETER	RESULT	REPORTING LIMIT UNITS	METHOD	PREPARATION- ANALYSIS DATE	WORK ORDER #
Prep Batch # Mercury	: 6116311 0.019 B,J/	0.12 ug Dilution Factor: 1	SW846 7471A		H3KFR1AC
Prep Batch #	: 6116334				
Silver	0.15 B	1.2 ug Dilution Factor: 1	SW846 6020 MDL 0.014	04/25-04/26/06	H3KFR1AK
Arsenic	ND	3.6 ug Dilution Factor: 1	SW846 6020	04/25-04/26/06	H3KFR1AL
Barium	ND	120 ug Dilution Factor: 1	SW846 6020	04/25-04/26/06	H3KFR1AM
Beryllium	0.016 B	1.2 ug Dilution Factor: 1	SW846 6020	04/25-04/26/06	H3KFR1AN
Cadmium	ND	1.2 ug Dilution Factor: 1	SW846 6020	04/25-04/26/06	H3KFR1AP
Cobalt	ND	12.0 ug Dilution Factor: 1	SW846 6020	04/25-04/26/06	H3KFR1AQ
Chromium	ND	12.0 ug Dilution Factor: 1	SW846 6020	04/25-04/26/06	H3KFR1AR
Copper	305	6.0 ug Dilution Factor: 1	SW846 6020	04/25-04/26/06	H3KFR1AT
Manganese	11.9/	6.0 ug Dilution Factor: 1	SW846 6020	04/25-04/26/06	H3KFR1AU
Molybdenum	ND	6.0 ug Dilution Factor: 1	SW846 6020	04/25-04/26/06	H3KFR1AV
Nickel	ИD	6.0 ug Dilution Factor: 1	SW846 6020	04/25-04/26/06	H3KFR1AW
Lead	1.4	1.2 ug Dilution Factor: 1	SW846 6020	04/25-04/26/06	H3KFR1AX

Client Sample ID: 000424

TOTAL Metals

Lot-Sample #...: G6D190170-009

		REPORTING			PREPARATION~	WORK
PARAMETER	RESULT	TIMIT	UNITS	METHOD	ANALYSIS DATE	ORDER #
Selenium	ND	3.6	ug	SW846 6020	04/25-04/26/06	H3KFR1A0
		Dilution Fac	etor: 1	MDL 1.7		
Vanadium	3.2 B,J	12.0	ug	SW846 6020	04/25-04/26/06	H3KFR1A1
	•	Dilution Fac	ctor: 1	MDL 2.9		
Zinc	ND	24.0	ug	SW846 6020	04/25-04/26/06	H3KFR1AA
		Dilution Fac	etor: 1	MDL 6.2		
Prep Batch #.	: 6116343					
Aluminum	224 B	240	ug	SW846 6010B	04/25-04/28/06	H3KFR1AE
		Dilution Fac	ctor: 1	MDL 40.8		
Calcium	ND 🗸	3000	ug	SW846 6010B	04/25-04/28/06	H3KFR1AF
		Dilution Fac	ctor: 1	MDL 898		
Iron	257	120	ug	SW846 6010B	04/25-04/28/06	H3KFR1AG
		Dilution Fac	ctor: 1	MDL 14.4		
Magnesium	191 B	600	uq	SW846 6010B	04/25-04/28/06	H3KFR1AH
		Dilution Fac	ctor: 1	MDL 97.2		
Sodium	ND	6000	ug	SW846 6010B	04/25-04/28/06	H3KFR1AJ
		Dilution Fac	ctor: 1	MDL 2020		
NOTE(S):						

B Estimated result. Result is less than RL.

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: 000425

TOTAL Metals

Lot-Sample # Date Sampled		010 Date Received.	: 04/19/06	Matrix:	AIR
PARAMETER	RESULT	REPORTING LIMIT UNITS	METHOD	PREPARATION- ANALYSIS DATE	WORK ORDER #
Prep Batch # Mercury	0.041 B,	0.12 ug Dilution Factor: 1	SW846 7471A MDL: 0,0003		H3KFT1AE
Prep Batch #	.: 6116334				
Silver	0.15 B 🦯	1.2 ug Dilution Factor: 1	SW846 6020 MDL 0.014	04/25-04/26/06	H3KFT1AM
Arsenic	ND	3.6 ug Dilution Factor: 1	SW846 6020	04/25-04/26/06	H3KFT1AN
Barium	ND	120 ug Dilution Factor: 1	SW846 6020	04/25-04/26/06	H3KFT1AP
Beryllium	0.016 B	1.2 ug Dilution Factor: 1	SW846 6020	04/25-04/26/06	нзкгтіао
Cadmium	0.061 в	1.2 ug Dilution Factor: 1	SW846 6020	04/25-04/26/06	H3KFT1AR
Cobalt	ND	12.0 ug Dilution Factor: 1	SW846 6020	04/25-04/26/06	H3KFT1AT
Chromium	ND	12.0 ug Dilution Factor: 1	SW846 6020	04/25-04/26/06	H3KFT1AU
Copper	277	6.0 ug Dilution Factor: 1	SW846 6020 MDL 2.9	04/25-04/26/06	H3KFT1AV
Manganese	13.7	6.0 ug Dilution Factor: 1	SW846 6020	04/25-04/26/06	H3KFT1AW
Molybdenum	ND	6.0 ug Dilution Factor: 1	SW846 6020	04/25-04/26/06	H3KFT1AX
Nickel	ND	6.0 ug Dilution Factor: 1	SW846 6020	04/25-04/26/06	H3KFT1A0
Lead	2.5	1.2 ug Dilution Factor: 1	SW846 6020 MDL 0.34	04/25-04/26/06	H3KFT1A1

Client Sample ID: 000425

TOTAL Metals

Lot-Sample #...: G6D190170-010

		REPORTI	NG		PREPARATION-	WORK
PARAMETER	RESULT	LIMIT	UNITS	METHOD	ANALYSIS DATE	ORDER #
Selenium	ND	3.6	ug	SW846 6020	04/25-04/26/06	H3KFT1AA
		Dilution Fac	etor: 1	MDL 1.7		
Vanadium	3.7 В,Ј Й	12.0	ug	SW846 6020	04/25-04/26/06	H3KFT1AC
		Dilution Fac	ctor: 1	MDL 2.9		
Zinc	9.9 B	24.0	ug	SW846 6020	04/25-04/26/06	H3KFT1AD
		Dilution Fac	etor: 1	MDL 6.2		
Prep Batch #.					0.105 0.100/05	************
Aluminum	334 /		ug	SW846 6010B	04/25-04/28/06	H3KFTLAG
		Dilution Fac	ctor: 1	MDL 40.8		
Calcium	ND	3000	ug	SW846 6010B	04/25-04/28/06	H3KFT1AH
		Dilution Fac	ctor: 1	MDL 898		
Iron	442/	120	ug	SW846 6010B	04/25-04/28/06	H3KFT1AJ
		Dilution Fac	ctor: 1	MDL: 14.4		
Magnesium	356 B	600	ug	SW846 6010B	04/25-04/28/06	H3KFT1AK
		Dilution Fac	ctor: 1	MDL 97.2		
Sodium	ND	6000	ug	SW846 6010B	04/25-04/28/06	H3KFT1AL
		Dilution Fac	ctor: 1	MDL 2020		
NOTE (S) :						

B Estimated result. Result is less than RL.

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: 000426

TOTAL Metals

Lot-Sample # Date Sampled		011 Date Received	: 04/19/06	Matrix:	AIR
PARAMETER	RESULT	REPORTING LIMIT UNITS	METHOD	PREPARATION- ANALYSIS DATE	WORK ORDER #
Prep Batch # Mercury	: 6116311 0.014 B,J	0.12 ug Dilution Factor: 1	SW846 7471A		НЗКРVІАС
Prep Batch #	: 6116334				
Silver	0.25 B	1.2 ug Dilution Factor: 1	SW846 6020 MDL 0.014	04/25-04/26/06	H3KFV1AK
Arsenic	ND	3.6 ug Dilution Factor: 1	SW846 6020	04/25-04/26/06	H3KFV1AL
Barium	ND	120 ug Dilution Factor: 1	SW846 6020	04/25-04/26/06	H3KFV1AM
Beryllium	0.017 B	1.2 ug Dilution Factor: 1	SW846 6020	04/25-04/26/06 1	H3KFV1AN
Cadmium	0.072 B	1.2 ug Dilution Factor: 1	SW846 6020	04/25-04/26/06	H3KFV1AP
Cobalt	ND	12.0 ug Dilution Factor: 1	SW846 6020	04/25-04/26/06	H3KFV1AQ
Chromium	ND	12.0 ug Dilution Factor: 1	SW846 6020	04/25-04/26/06	H3KFV1AR
Copper	454 💅	6.0 ug Dilution Factor: 1	SW846 6020	04/25-04/26/06	H3KFV1AT
Manganese	18.2	6.0 ug Dilution Factor: 1	SW846 6020	04/25-04/26/06	нзк ғ улаи
Molybdenum	ND	6.0 ug Dilution Factor: 1	SW846 6020	04/25-04/26/06	H3KFV1AV
Nickel	ND	6.0 ug Dilution Factor: 1	SW846 6020	04/25-04/26/06	H3KFV1AW
Lead	2.1	1.2 ug Dilution Factor: 1	SW846 6020	04/25-04/26/06	H3KFVLAX

Client Sample ID: 000426

TOTAL Metals

Lot-Sample #...: G6D190170-011

		REPORTING			PREPARATION-	WORK
PARAMETER	RESULT	LIMIT	UNITS	METHOD	ANALYSIS DATE	ORDER #
Selenium	ND	3.6	ug	SW846 6020	04/25-04/26/06	H3KFV1A0
		Dilution Fac	tor: 1	MDL 1.7		
Vanadium	3.7 B, J	12.0	ug	SW846 6020	04/25-04/26/06	нзкучтут
		Dilution Fac	tor: 1	MDL 2.9		
Zinc	15.3 B/	24.0	ug	SW846 6020	04/25-04/26/06	H3KFV1AA
		Dilution Fac	tor: 1	MDL 6.2		
D Notob #	C11C141					
Prep Batch #. Aluminum	440	240	710	SW846 6010B	04/25-04/28/06	TIO PERMITATE
Alumini	440		ug	MDL 40.8	04/25-04/28/06	HOMEVIAE
		Dilution Fac	ror: r	MDE 40.8		
Calcium	978 B/	3000	ug	SW846 6010B	04/25-04/28/06	H3KFV1AF
		Dilution Fac	tor: 1	MDL 898		
Iron	542/	120	ug	SW846 6010B	04/25-04/28/06	H3KFVLAG
		Dilution Fac	tor: 1	MDL 14.4		
Magnesium	334 B	600	ug	SW846 6010B	04/25-04/28/06	НЗКFV1AН
		Dilution Fac	tor: 1	MDL 97.2		
Sodium	ND	6000	ug	SW846 6010B	04/25-04/28/06	H3KFV1AJ
		Dilution Fac-	tor: 1	MDL 2020		

B Estimated result, Result is less than RL,

J Method blank contamination. The associated method blank contams the target analyte at a reportable level.

Client Sample ID: 000427

TOTAL Metals

Lot-Sample # Date Sampled		012 Date	Received.	.: 04/19/06	Matrix:	AIR
		REPORTIN	1G		PREPARATION-	WORK
PARAMETER	RESULT	LIMIT	UNITS	METHOD	ANALYSIS DATE	ORDER #
Prep Batch #		0.12	uq	SW846 7471A	04/27/06	H3KFW1AE
Mercury	0.021 B,J	Dilution Fac	_	MDL 0.0003		
Prep Batch #		1.2	ug	SW846 6020	04/25-04/26/06	H3KFW1AM
Silver	0.10 B	Dilution Fac		MDL 0.014	,	
Arsenic	ND	3.6	ug	SW846 6020	04/25-04/26/06	H3KFW1AN
		Dilution Fac	ctor: 1	MDL 1.9		
		100	,,,,	SW846 6020	04/25-04/26/06	H3KFW1AP
Barium	ND	120 Dilution Fac	ug tor: 1	MDL, 34.8	, , , , , , , , , , , , , , , , , , ,	
		DIII COLOR I COL				
Beryllium	0.022 B	1.2	ug	SW846 6020	04/25-04/26/06	H3KFWLAQ
		Dilution Fac	ctor: 1	MDL 0.0084	1	
m N 1	0 000 B	1.2	uq	SW846 6020	04/25-04/26/06	H3KFW1AR
Cadmium	0.069 B	Dilution Fa	_	MDL 0.054	,	
		Danage of the				
Cobalt	ND	12.0	ug	SW846 6020	04/25-04/26/06	H3KFW1AT
		Dilution Fa	ctor: 1	MDL 3.7		
m2 L	ND	12.0	ug	SW846 6020	04/25-04/26/06	H3KFW1AU
Chromium	ND	Dilution Fa	_	MDL 10.3	, ,	
	<i></i>					
Copper	181	6.0	ug	SW846 6020	04/25-04/26/06	H3KFW1VA
		Dilution Fa	ctor: 1	MDL 2.9		
Vanazzona	12.4	6.0	ug	SW846 6020	04/25-04/26/06	H3KFW1AW
Manganese	12,4	Dilution Fa	_	MDL 1.9		
					/ /05/05	- TO WING AW
Molybdenum	ND	6.0	ug	SW846 6020	04/25-04/26/06	H3KFWIAK
		Dilution Fa	ctor: 1	MDL 1.1		
Nickel	ИД	6.0	uq	SW846 6020	04/25-04/26/06	H3KFW1A0
MICKET	112	Dilution Fa	-	MDL 3.5		
	ger.			0000 4 C C C C C C C C C C C C C C C C C	04/25-04/26/0	c uskbmiyi
Lead	1.9	1.2	ug	SW846 6020	U4/Z5-U4/Z6/U	TOTALIST
		Dilution Fa	ctor: 1	MDL 0.34		

Client Sample ID: 000427

TOTAL Metals

Lot-Sample #...: G6D190170-012

Matrix..... AIR

		REPORTIN	G		PREPARATION-	WORK
PARAMETER	RESULT	LIMIT	UNITS	METHOD	ANALYSIS DATE	ORDER #
Selenium	ND	3.6	ug	SW846 6020	04/25-04/26/06	H3KFW1AA
		Dilution Fac	tor: 1	MDL 1.7		
Vanadium	3.6 B,J	12.0	ug	SW846 6020	04/25-04/26/06	H3KFWLAC
		Dilution Fac	tor: 1	MDL 2.9		
Zinc	ND	24.0	ug	SW846 6020	04/25-04/26/06	H3KFW1AD
		Dilution Fac	tor: 1	MDI 6.2		
Prep Batch #	: 6116343					*************
Aluminum	296	240	ug	SW846 6010B	04/25-04/28/06	H3KFW1AG
	•	Dilution Fac	tor: 1	MDI 40.8		
Calcium	ND	3000	ug	SW846 6010B	04/25-04/28/06	H3KFW1AH
	,	Dilution Fac	tor: 1	MDI 898		
Iron	442/	120	ug	SW846 6010B	04/25-04/28/06	H3KFW1AJ
		Dilution Fac	tor: 1	MDL: 14.4		
Magnesium	242 B	600	ug	SW846 6010B	04/25-04/28/06	H3KFW1AK
		Dilution Fac	tor: 1	MDL 97.2		
Sodium	ND	6000	ug	SW846 6010B	04/25-04/28/06	H3KFW1AL
		Dilution Fac	tor: 1	MDL 2020		

B Estimated result. Result is less than RL.

NOTE(S):

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: 000428

TOTAL Metals

Lot-Sample # Date Sampled		013 Date Received.	.: 04/19/06	Matrix:	AIR
		REPORTING		PREPARATION-	WORK
PARAMETER	RESULT	LIMIT UNITS	METHOD	ANALYSIS DATE	ORDER #
Prep Batch # Mercury	: 6116311 0.028 B,J	0.12 ug Dilution Factor: 1	SW846 7471A		H3KFX1AE
Prep Batch #	: 6116334				
	0.094 B.	1.2 ug	SW846 6020	04/25-04/26/06	H3KFX1AM
		Dilution Factor: 1	MDL 0.014		
Arsenic	ND	3.6 ug	SW846 6020	04/25-04/26/06	H3KFX1AN
111001110	212	Dilution Factor: 1	MDL 1.9	,	
Barium	ND	120 ug	SW846 6020	04/25-04/26/06	H3KFXIAP
		Dilution Factor: 1	MDD		
Beryllium	0.014 B	1.2 ug	SW846 6020	04/25-04/26/06	H3KFX1AQ
		Dilution Factor: 1	MDL 0.0084	1	
Cadmium	ND	1.2 ug	SW846 6020	04/25-04/26/06	H3KFX1AR
oddin i din	112	Dilution Factor: 1	MDL 0.054	, , ,	
- > -	3770	70.0	GEIDAG G000	04/25-04/26/06	ប្រសព្ធប្រកាណ
Cobalt	ND	12.0 ug Dilution Factor: 1	SW846 6020	04/25-04/26/06	HIMINGE
		principal Index. I			
Chromium	ND	12.0 ug	SW846 6020	04/25-04/26/06	H3KFX1AU
		Dilution Factor: 1	MDL: 10.3		
Copper	169***	6.0 uq	SW846 6020	04/25-04/26/06	H3KFX1AV
11		Dilution Factor: 1	MDL 2.9		
			GV0.45 5000	04/05 04/05/05	rra wawa aw
Manganese	13.3,~	6.0 ug Dilution Factor: 1	SW846 6020 MDL1.9	04/25-04/26/06	WALATIA
		pilution ractor: 1	Мрр 1.3		
Molybdenum	ND	6.0 ug	SW846 6020	04/25-04/26/06	H3KFX1AX
		Dilution Factor: 1	MDL: 1,1		
Nickel	ND	6.0 ug	SW846 6020	04/25-04/26/06	H3KFX1A0
14 I W 37 W I	.12	Dilution Factor: 1	MDL 3.5	, , ,	
	, a				*** *********
Lead	1.8	1.2 ug	SW846 6020	04/25-04/26/06	H3KFXTAT
		Dilution Factor: 1	MDL 0.34		

Client Sample ID: 000428

TOTAL Metals

Lot-Sample #...: G6D190170-013

		REPORTIN	g.		PREPARATION-	WORK
PARAMETER	RESULT	LIMIT	UNITS	METHOD	ANALYSIS DATE	
Selenium	ND	3.6	ug	SW846 6020	04/25-04/26/06	H3KFX1AA
		Dilution Fact	tor: 1	MDL 1.7		
Vanadium	3.6 В,Ј€	12.0	ug	SW846 6020	04/25-04/26/06	H3KFX1AC
		Dilution Fact	tor: 1	MDL 2.9		
Zinc	6.9 B	24.0	ug	SW846 6020	04/25-04/26/06	H3KFX1AD
		Dilution Fact	tor: 1	MDL 6.2		
Prep Batch #	.: 6116343					
Aluminum	315 /	240	ug	SW846 6010B	04/25-04/28/06	H3KFX1AG
		Dilution Fac	tor: 1	MDL 40.8		
Calcium	ND	3000	ug	SW846 6010B	04/25-04/28/06	H3KFX1AH
		Dilution Fac	tor: l	MDL 898		
Iron	403 /	120	ug	SW846 6010B	04/25-04/28/06	H3KFX1AJ
	•	Dilution Fac	tor: 1	MDL 14.4		
Magnesium	238 B	600	ug	SW846 6010B	04/25-04/28/06	H3KFX1AK
J		Dilution Fac	tor: 1	MDL 97.2		
Sodium	ND	6000	ug	SW846 6010B	04/25-04/28/06	H3KFX1AL
		Dilution Fac	tor: 1	MDL 2020		

NOTE (S):

B Estimated result. Result is less than RL.

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: 000429

TOTAL Metals

Lot-Sample # Date Sampled		014 Date Received	: 04/19/06	Matrix:	AIR
		REPORTING		PREPARATION-	WORK
PARAMETER	RESULT	LIMIT UNITS	METHOD	ANALYSIS DATE	ORDER #
Prep Batch # Mercury	6116311 0.010 B,J	0.12 ug Dilution Factor: 1	SW846 7471A	•	H3KF01AC
Prep Batch #	: 6116334				
Silver	,0.016 B	1.2 ug	SW846 6020	04/25-04/26/06	H3KF01AK
		Dilution Factor: 1	MDL 0.03.4		
7 d - -	ND	3.6 ug	SW846 6020	04/25-04/26/06	накъплат.
Arsenic	ND	3.6 ug Dilution Factor: 1	MDL 1.9	04/25-04/20/00	nom on a
Barium	ND	120 ug	SW846 6020	04/25-04/26/06	H3KF01AM
		Dilution Factor: 1	MDL 34.8		
Beryllium	ND	1.2 uq	SW846 6020	04/25-04/26/06	H3KF01AN
perlrum	ND	Dilution Factor: 1	MDL 0.008	•	
Cadmium	ND	1.2 ug	SW846 6020	04/25-04/26/06	H3KF01AP
		Dilution Factor: 1	MDL: 0.054		
Cobalt	ND	12.0 ug	SW846 6020	04/25-04/26/06	H3KF01AQ
CODAIC	TID.	Dilution Factor: 1	MDL 3.7	•	
Chromium	ND	12.0 ug	SW846 6020	04/25-04/26/06	H3KF01AR
		Dilution Factor: 1	MDL: 10.3		
Copper	ND	6.0 ug	SW846 6020	04/25-04/26/06	H3KF01AT
* *		Dilution Factor: 1	MDL 2.9		
			0710 4 5 6 0 0 0	04/05 04/06/06	TIONEO I VII
Manganese	ND	6.0 ug Dilution Factor: 1	SW846 6020 MDL 1.9	04/25-04/26/06	H3KFUIAO
		Dilution Factor: 1	WDD.,		
Molybdenum	ND	6.0 ug	SW846 6020	04/25-04/26/06	H3KF01AV
•		Dilution Factor: 1	MDL 1.1		
ar! -11	NT	6.0 ug	SW846 6020	04/25-04/26/06	H3KF01AW
Nickel	ND	6.0 ug Dilution Factor: 1	MDL 3.5	01/25 01/20)00	220442 0 20 411
Lead	ND	1.2 ug	SW846 6020	04/25-04/26/06	H3KF01AX
		Dilution Factor: 1	MDL 0.34		

Client Sample ID: 000429

TOTAL Metals

Lot-Sample #...: G6D190170-014

		REPORTIA	1G		PREPARATION-	WORK
PARAMETER	RESULT	LIMIT	UNITS	METHOD	ANALYSIS DATE	ORDER #
Selenium	ND	3.6	ug	SW846 6020	04/25-04/26/06	H3KF01A0
		Dilution Fac	tor: 1	MDL 1.7		
	The second second					
Vanadium	3.0 B,J 🦎	12.0	ug	SW846 6020	04/25-04/26/06	H3KF01A1
* "	Ng Tanàna na kaominina mpikambana na kaominina mpikambana na kaominina mpikambana na kaominina mpikambana na k Ng	Dilution Fac	tor: 1	MDL 2.9		
	*				04/05 04/06/06	112 VEA 1 X X
Zinc	ND	24.0	ug	SW846 6020	04/25-04/26/06	HAKTUTAK
		Dilution Fac	etor: 1	MDL 6.2		
D	6116242					
Prep Batch # Aluminum	ND	240	ug	SW846 6010B	04/25-04/28/06	H3KF01AE
ATUMITHUM	ND	Dilution Fac	. 3	MDL	•	
		DIFIGUROU TWO	, _			
Calcium	ND	3000	ug	SW846 6010B	04/25-04/28/06	H3KF01AF
001010		Dilution Fac	etor: 1	MDL 898		
	. 1					
Iron	ND A	120	ug	SW846 6010B	04/25-04/28/06	H3KF01AG
		Dilution Fac	ctor: 1	MDL 14.4		
					04/05 04/00/05	TIOTE CONTENT
Magnesium	ND	600	ug	SW846 6010B	04/25-04/28/06	H3KFULAH
		Dilution Fac	ctor: 1	MDL 97.2		
				SW846 6010B	04/25-04/28/06	нзкволал
Sodium	ND	6000	ug		04/25-04/20/00	115111 0 1110
		Dilution Fac	ctor: 1	MDL 2020		
more (a)						
NOTE(S):						

B Estimated result. Result is less than RL.

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: P-0591

General Chemistry

Lot-Sample #...: G6D190170-001 Work Order #...: H3KFF Matrix...... AIR

Date Sampled...: 04/14/06 Date Received..: 04/19/06

 PARAMETER
 RESULT
 RL
 UNITS
 METHOD
 ANALYSIS DATE
 BATCH #

 Particulate Matter
 0.0070 / 0.0001
 g
 CFR50J APDX J
 04/21/06
 6116575

as PM10

Client Sample ID: P-0592

General Chemistry

Lot-Sample #...: G6D190170-002

Work Order #...: H3KFG

Matrix..... AIR

Date Sampled...: 04/14/06

Date Received..: 04/19/06

 PARAMETER
 RESULT
 RL
 UNITS
 METHOD
 ANALYSIS DATE
 BATCH #

 Particulate Matter
 0.0084 / 0.0001 g
 CFR50J APDX J
 04/21/06
 6116575

as PMl0

Client Sample ID: P-0593

General Chemistry

Lot-Sample #...: G6D190170-003 Work Order #...: H3KFH Matrix.....: AIR

Date Sampled...: 04/14/06 Date Received..: 04/19/06

 PARAMETER
 RESULT
 RL
 UNITS
 METHOD
 ANALYSIS DATE
 BATCH #

 Particulate Matter
 0.0074,
 0.0001
 g
 CFR50J APDX J
 04/21/06
 6116575

as PM10

Client Sample ID: P-0594

General Chemistry

Lot-Sample #...: G6D190170-004 Work Order #...: H3KFJ Matrix.....: AIR

Date Sampled...: 04/14/06 Date Received..: 04/19/06

PARAMETER RESULT RL UNITS METHOD ANALYSIS DATE BATCH #
Particulate Matter 0.0103/ 0.0001 g CFR50J APDX J 04/21/06 6116575
as PM10

Client Sample ID: P-0595

General Chemistry

Lot-Sample #...: G6D190170-005 Work Order #...: H3KFL Matrix...... AIR

Date Sampled...: 04/14/06 Date Received..: 04/19/06

PARAMETER RESULT RL UNITS METHOD ANALYSIS DATE BATCH #
Particulate Matter 0.0080 0.0001 g CFR50J APDX J 04/21/06 6116575

as PM10

Client Sample ID: P-0596

General Chemistry

Lot-Sample #...: G6D190170-006 Work Order #...: H3KFM Matrix...... AIR

Date Sampled...: 04/14/06 Date Received..: 04/19/06

PARAMETER RESULT RL UNITS METHOD ANALYSIS DATE BATCH #
Particulate Matter 0.0080 0.0001 g CFR50J APDX J 04/21/06 6116575
as PM10

Client Sample ID: P-0597

General Chemistry

Lot-Sample #...: G6D190170-007 Work Order #...: H3KFP Matrix...... AIR

Date Sampled...: 04/14/06 Date Received..: 04/19/06

 PARAMETER
 RESULT
 RL
 UNITS
 METHOD
 ANALYSIS
 DATE
 BATCH #

 Particulate Matter
 0.0077 0.0001
 g
 CFR50J APDX J
 04/21/06
 6116575

as PM10

Client Sample ID: 000423

General Chemistry

Lot-Sample #...: G6D190170-008 Work Order #...: H3KFQ Matrix.....: AIR

Date Sampled...: 04/14/06 Date Received..: 04/19/06

PREPARATION- PREPARAMETER

RESULT RL UNITS METHOD ANALYSIS DATE BATCH #

Total Suspended 0.0305 0.0001 g CFR50B APDX B 04/21/06 6116572

Particulates

Client Sample ID: 000424

General Chemistry

Lot-Sample #...: G6D190170-009 Work Order #...: H3KFR

Matrix..... AIR

Date Sampled...: 04/14/06

Date Received..: 04/19/06

PREP PREPARATION-

PARAMETER Total Suspended RESULT $\frac{\frac{1}{1}}{0.0210}$ $\frac{\frac{1}{1}}{0.0001}$ $\frac{\frac{1}{1}}{g}$

RL UNITS

METHOD CFR50B APDX B ANALYSIS DATE BATCH # 04/21/06

6116572

Client Sample ID: 000425

General Chemistry

Lot-Sample #...: G6D190170-010

Work Order #...: H3KFT

Matrix..... AIR

Date Sampled...: 04/14/06

Date Received..: 04/19/06

 PARAMETER
 RESULT
 RL
 UNITS
 METHOD
 ANALYSIS DATE
 BATCH #

 Total Suspended
 0.0247*
 0.0001
 g
 CFR50B APDX B
 04/21/06
 6116572

Client Sample ID: 000426

General Chemistry

Lot-Sample #...: G6D190170-011

Work Order #...: H3KFV

Matrix....: AIR

Date Sampled...: 04/14/06

Date Received..: 04/19/06

PREPARATION- PREP

PARAMETER Total Suspended RESULT 0.0353 RL UNITS g

METHOD CFR50B APDX B ANALYSIS DATE BATCH # 04/21/06

Client Sample ID: 000427

General Chemistry

Lot-Sample #...: G6D190170-012

Work Order #...: H3KFW

Matrix..... AIR

Date Sampled...: 04/14/06

Date Received..: 04/19/06

 PARAMETER
 RESULT
 RL
 UNITS
 METHOD
 ANALYSIS DATE
 BATCH #

 Total Suspended
 0.0220 / 0.0001 g
 CFR50B APDX B
 04/21/06
 6116572

Client Sample ID: 000428

General Chemistry

Lot-Sample #...: G6D190170-013 Work Order #...: H3KFX

Matrix..... AIR

Date Sampled...: 04/14/06

Date Received..: 04/19/06

PREPARATION-PREP PARAMETER
 RESULT
 RL
 UNITS
 METHOD

 0.0242 *
 0.0001
 g
 CFR50B
 ANALYSIS DATE BATCH # Total Suspended CFR50B APDX B 04/21/06 6116572

Client Sample ID: 000429

General Chemistry

Lot-Sample #...: G6D190170-014 Work Order #...: H3KF0

Matrix..... AIR

Date Sampled...: 04/14/06

Date Received..: 04/19/06

PREPARATION-ANALYSIS DATE BATCH # PARAMETER Total Suspended CFR50B APDX B 04/21/06 6116572

RQC050

Severn Trent Laboratories, Inc. Run Date: 4/26/06 WET CHEM BATCHSHEET

Time: 17:37:04

STL Sacramento

PRODUCTION FIGURES - WET CHEM

TOTAL NUMBER	SAMPI NUMBE		<u>oc</u>	RE-RUN MATRIX	RE-RUN OTHER	MISC NUMBER	TOTAL HOURS	EXPANDED DELIVERABLE
METHOD: QC BATCH PREP DAT COMP DAT USER:	:#: 6 E: E:	R Parti 116575 4/21/06 4/21/06 ALMORES	9:13 15:20		PM10 "PM10 INITIALS: PREP ANAL	_	(CFR50-J) DATA EN INITI DATE	
				Struc	ctured Ex	p. Anal	ysis	

Work Order	Lab Number	Structured Ex Analysis De	kp. Analysis el. Date	Sample ID:
	G-6D190170-001	XX S 88 JR 01 Y-	-D 4/21/06	P-0591
H3KFG-1-AD	G-6D190170-002	XX S 88 JR 01. Y-	-D	P-0592
H3KFH-1-AD	G-6D190170-003	XX S 88 JR 01 Y-	-D	P-0593
H3KFJ-1-AD	G-6D190170-004	XX S 88 JR 01 Y-	-D	P-0594
H3KFL-1-AD	G-6D190170-005	XX S 88 JR 01 Y-	-D	P-0595
H3KFM-1-AD	G-6D190170-006	XX S 88 JR 01 Y	- D	P-0596
H3KFP-1-AD	G-6D190170-007	XX S 88 JR 01 Y-	·D	P-0597

STL Sacramento Air Toxics Laboratory

PARTICULATE ANALYSIS

LEVEL 1 & 2 REVIEW CHECKLIST

LEVEL 1 & 2 REVIEW OF LEGICAL .	
ARNIMBERS: 66019040-1-57 Batch#: 6116575	
LAB NUMBERS:	
ANALYSIS: (circle) (TSP/PM10 or METHOD 5	
DATE:	
LEVEL 1 ANALYSIS REVIEW YES NO	NA
1. Samples are in good condition.	
3 Designator temperature and % humidity diteria in exhibit.	
	<u> </u>
5 Reginning and ending calibration sample bracket Weights 1.5	<u></u> .
a Campion reached stable Weight	_
7 Samples exceeded 5 consecutive final weightings.	
LEVEL 1 DATA REVIEW	
1. Benchsheet is complete.	
2. QAS or QAPP consulted and followed for client specifics.	
4. Copy of spreadsheet or logbook raw data citary 5. Analyst observations, HTV's, Anomalies properly documented and attached 5. Analyst observations, HTV's, Anomalies properly documented and attached	7
to data package. Completed By & Date:	
Completed by a batter.	
LEVEL 2 REVIEW:	
1. Level 1 checklist complete and verified.	
a Devictione Anomalies. Holding times checked and approved.	
3. Reanalysis documented and chemist notified.	
A client enecific criteria Mel	
Langhahand of coreansilest of teviet and to the coreansilest of the coreansile	
-i-mad) (\(\frac{1}{2} \) \(\frac{1} \) \(\frac{1}{2} \) \(\frac{1}{2} \) \(\frac{1}{2} \) \(\f	
Completed By & Date:	
Comments: des dA	
	-

SOP# : Sac-IP-0006

orn Trent i charateries

WEST SACRAMENTO

Severn Frent Laboratories	VVEST SACKAMEN
AIR TOXICS GRAVIMETRIC ANALYSES	

			ļ						Wt of
	Initial Weight (g)	Initial Weight (g)	Final Weight (g)	Final Weight (g)	Final Weight (g)	Final Weight (g)	Final Weight (g)	Final Weight (g)	Particulate
Filter ID	date/time initials	date/time initials	date/time initials	date/time initials	date/time initials	date/time initials	date/time initials	date/time initials	(g)
5 a	5.0000	5.0004	4.9999	5.0002					-0.0006
wt	030706skv1039	030706skv1653	042106skv0913		042206skv0918				0.0048
pmbc030706-	4.4912	4.4912	4.4956		;			1	0.0046
586	030706skv1039	030706skv1653	042106skv0914						0.0044
pmbc030706-	4.4723	4.4723	4.4762	*****					0.0044
587	030706skv1040	030706skv1654	042106skv0915						0.0042
pmbc030706-	4.4689	4.4692	4.4712		1				0.0042
588	030706skv1040	030706skv1655	042106skv0915	042106skv1516	042206skv0918				0.0021
pmbc030706-	4.4845	4.4845	4.4862	4.4866					0.0021
589	030706skv1040	030706skv1656	042106skv0915					<u> </u>	-0.0025
pmbc030706-	4.4627	4.4623	4.4601						-0.0025
590	030706skv1041	030706skv1656	042106skv0917						0.0070
pmbc030706-	4:4740	4.4740	4.4807				. `	ļ	0.0070
591	030706skv1041	030706skv1657		-				· 	0.0084
pmbc030706-	4.4792	4.4793	4.4877						0.0064
592	030706skv1041	030706skv1657	042106skv0918				ļ <u>.</u>		0.0074
pmbc030706-	4.4799	4.4803	4.4880	1					0.0074
593	030706skv1042	030706skv1658	042106skv0919	042106skv1517					0.0400
pmbc030706-	4.4673	4.4675	4,4783	4.4778	,				0.0103
594	030706skv1042	030706skv1658	042106skv0919	042106skv1518				_ 	0.0000
pmbc030706-	4.4766	4.4770	4.4855	4,4850					0.0080
595	030706skv1043	030706skv1659	042106skv0919	042106skv1518				ļ	2 2225
5 g	5.0005	5.0003	5.0000	4.9998	4.9998		1		-0.0005
wt	030706skv1043	030706skv1659	042106skv0920	042106skv1518	042206skv0918	1			
	4.4891	4.4896	4.4975	4.4976					0.0080
1 '		030706skv1700	042106skv0920	042106skv1519					
	4.4758	4.4758	4.4831	4.4835					0.0077
1 -		· ·	042106skv0920	042106skv1519					
		4.4713							NC
598	1	1			1				
	5 g wt pmbc030706- 586 pmbc030706- 587 pmbc030706- 588 pmbc030706- 589 pmbc030706- 591 pmbc030706- 592 pmbc030706- 593 pmbc030706- 594 pmbc030706- 595 5 g wt pmbc030706- 596 pmbc030706- 596 pmbc030706- 597 pmbc030706-	5 g	Filter ID date/time initials date/time initials 5 g 5.0000 5.0004 wt 030706skv1039 030706skv1653 pmbc030706- 4.4912 4.4912 586 030706skv1039 030706skv1653 pmbc030706- 4.4723 4.4723 587 030706skv1040 030706skv1654 pmbc030706- 4.4689 4.4692 588 030706skv1040 030706skv1655 pmbc030706- 4.4845 4.4845 589 030706skv1040 030706skv1656 pmbc030706- 4.4740 4:4740 591 030706skv1041 030706skv1657 pmbc030706- 4.4792 4.4793 pmbc030706- 4.4799 4.4803 pmbc030706- 4.4673 4.4675 pmbc030706- 4.4766 4.4770 595 030706skv1042 030706skv1658 pmbc030706- 4.4766 4.4770 595 5.0005 5.0003 wt 030706skv1043 03070	Filter ID date/time initials date/time initials date/time initials date/time initials 5 g wt 5.0000 5.0004 4.9999 wt 030706skv1039 030706skv1653 042106skv0913 pmbc030706- 586 030706skv1039 030706skv1653 042106skv0914 pmbc030706- 587 030706skv1040 030706skv1654 042106skv0915 pmbc030706- 588 030706skv1040 030706skv1655 042106skv0915 pmbc030706- 589 4.4689 4.4692 4.4712 pmbc030706- 589 030706skv1040 030706skv1655 042106skv0915 pmbc030706- 590 4.4627 4.4623 4.4601 pmbc030706- 591 4.4740 4.4740 4.4807 pmbc030706- 592 4.4792 4.4733 4.4877 pmbc030706- 593 4.4792 4.4733 4.4877 pmbc030706- 593 4.4673 4.4603 4.4880 pmbc030706- 594 4.4673 4.4675 4.4783 pmbc030706- 595 4.4673 4.4675 4.4783 pmbc030706- 59	Filter ID	Filter ID	Filter D	Filter D	Filter D

GRAVIMETRIC BALANCE: QA-45

SOP# : Sac-iP-0006

WEST SACRAMENTO

030706skv1047 | 030706skv1702 | 042106skv0921 | 042106skv1520

Severn Trent Laboratories

AIR TOXICS GRAVIMETRIC ANALYSES

AIR TUAL	CORMANIME	けんけい マンスト・コード								
Lab ID	Filter ID	Initial Weight (g) date/time initials	Initial Weight (g)	Final Weight (g) date/time_initials	Final Weight (g)	Final Weight (g)	Final Weight (g) date/time initials	Final Weight (g) date/time initials	Final Weight (g) date/time_initials	Wt of Particulate (g)
	pmbc030706-	4.4603	4,4603							NC
'	599	030706skv1045	030706skv1701							110
	pmbc030706-	4.4659	4.4659					!		NC
	600	030706skv1045	030706skv1702							-0.0004
	5 a	5.0000	5.0002	4.9998	4.9998	1		!	1	-0.0004

Page 2/2 Batch#: 6116575

GRAVIMETRIC BALANCE: QA-45

PDE115

Severn Trent Laboratories, Inc. Inorganics Batch Review QC Batch **6116575**

Date 4/28/2006 Time 12:48:39

Method Code: JR Particulate Matter as PM10 "PM10 HiVol" (CFR50-J) Analyst: Steve Valmores

-					Tota⊥	PSRL	_	Rounded (Output	
Work Order	Result	<u>Units</u>	_LDL/Dil_	Prep Anal.	Solids	Flag	R/R	Result	<u> </u>	Dil.
H3KFF-I-AA	0.0070	9	0.0001	04/21/06	.00	N	R	0.0070	0.0001	1.00
H3KFG-1-AD	0.0084	g	0.0001	04/21/06	.00	N	R	0.0084	0.0001	1.00
H3KFH-1-AD	0.0074	g	0.0001	04/21/06	.00	N	R	0.0074	0.0001	1.00
H3KFJ-1-AD	0.0103	g	0.0001	04/21/06	.00	И	R	0.0103	0.0001	1.00
H3KFL-1-AD	0.0080	g	0.0001	04/21/06	.00	N	R	0.0080	0.0001	1.00
H3KFM-1-AD	0.0080	g	0.0001	04/21/06	.00	N	R	0.0080	0.0001	1.00
H3KFP-1-AD	0.0077	g	0.0001	04/21/06	.00	N	R	0.0077	0.0001	1.00

Notes:

TEST

TOTAL # SAMPLE # QC # MATRIX # OTHER # MISC # HOURS

RQC050

Severn Trent Laboratories, Inc. Run Date: 4/26/06 WET CHEM BATCHSHEET

Time: 17:38:46

STL Sacramento

PRODUCTION FIGURES - WET CHEM

TOTAL NUMBER	SAM:		QC	RE-RU MATR				-RUN HER		MIS NUM			FAL JRS	EXPANDED DELIVERABLE
METHOD: QC BATCH PREP DATE COMP DATE USER:	E:	611657	'06 9:04 '06 9:14			. S1		ende ITIA PR AN	LS: EP _	SP	Hivol"		PP B) ATA ENI INITIA DATE _	`
Work Order	r I	Lab Num	ıber				ture ysis		Exp Del		Analys Date		Sample	iD:
H3KFQ-1-M	A (G-6D190	170-008	XX	S	88	AO	ЗW	Y ~D) .	44.	Ĺ	000423	3
H3KFR-1-AI	D (G-6D190	170-009-	XX	s	88	OA	3W	Y-D	,			000424	Ł
H3KFT-1-AF	F (G-6D190	170-010	XX	s	88	AO	ЗW	Y-D	,			000425	5
H3KFV-1-A2	2 (G-6D190	170-011	XX	S	88	AO	3W	Y-D)			000426	5
H3KFW-1-AI	F (G-6D190)170-012 _	XX	s	88	AO	3W	Y - D	;			000427	7
H3KFX-1~A	F (G-6D190	0170-013 🐇	XX	s	88	AO	3 W	Y-D				000428	3
H3KF0-1-A2	2 (G-6D190	170-014	xx	s	88	AO	ЗИ	Y-D	١ .			000429	•
				Cor	ıtı	col	Lin	nits	·	•				

STL Sacramento **Air Toxics Laboratory**

PARTICULATE ANALYSIS

LEVEL 1 & 2 REVIEW CHECKLIST

LEVEL 1 & 2 REVIEW CHECKLIST		
AB NUMBERS: 6114 Batch # 61145	42	
ANALYSIS: (circle) TSP/PM10 or METHOD 5		
DATE: 4/20 ANALYST: Statutes		LT A
LEVEL 1 ANALYSIS REVIEW	YES NO	NA
1. Samples are in good condition. 2. Sample filter number matches the folder or petri ID number. 2. Sample filter number matches the folder or petri in control.	\leftarrow	
3. Desiccator temperature and % numbers when a most account of		
	\overline{Z}	
 Balance calibration criteria met. Beginning and ending calibration sample bracket weights are in calibration. 		
6. Samples reached stable weight. 7. Samples exceeded 5 consecutive final weighings.		-
LEVEL 1 DATA REVIEW		
. n		
2. QAS or QAPP consulted and followed for client specifics.	$ \ge $	
3. Data entered in properly. 4. Copy of spreadsheet or logbook raw data entry attached to data package. 4. Copy of spreadsheet or logbook raw data entry attached and attached		_
4. Copy of spreadsheet or logbook raw data citaly additional and attached 5. Analyst observations, HTV's, Anomalies properly documented and attached		
- 1 1 No	uloi	_
Completed by & Date		_
LEVEL 2 REVIEW:		
Level 1 checklist complete and verified. Deviations, Anomalies, Holding times checked and approved.		
Deviations, Anomalies, Holding arross of the second s		1
4 overt creditic criteria met.		**************************************
Lanchshoot or chreatistical toll texter und toll to		
signed). Completed By & Date:	rloc	
AS cop		
Comments:		
		<u></u>

328 of 331

SOP#: Sac-IP-0006

WEST SACRAMENTO Severn Trent Laboratories

AIR TOXICS G	RAVIMETRIC	ANALYSES

									F 144 3-1463	Wt of
Lab ID	Filter ID	Initial Weight (g) date/time_initials	Initial Weight (g) date/time initials	Final Weight (g) date/time initials	Final Weight (g) date/time_initials	Final Weight (g) date/time initials	Final Weight (g) date/time initials	Final Weight (g) date/time_initials	Final Weight (g) date/time_initials	Particulate (g) -0.0004
		5,0003	5.0005	4.9998	5.0001	5.0001	l			-0.0004
ļ	wt	030706skv1019	030706skv1639	042106skv0902	042106skv1506	042206skv0912				0.0194
H2DTP	bctsp030706-	4.3284	4.3284	4.3483	4.3478		ļ			0.0134
	411	030706skv1019	030706skv1639	040506skv1020						0.0118
H2DTQ	bctsp030706-	4.3315	4.3319	4.3434	4.3437		ļ	ļ		0.0110
	412	030706skv1019	030706skv1640	040506skv1020	040606skv1546				ļ	0.0122
H2DTR	bctsp030706-	4.3140	4.3135	4.3253	4.3257					0.0122
	413	030706skv1020	030706skv1640	040506skv1020	040606skv1546			ļ		0.0470
H2DTT	bctsp030706-	4.3206	4.3206	4.3379	4.3376	'				0.0170
,	414	030706skv1020	030706skv1642	040506skv1021	040606skv1547			<u> </u>		0.0405
H2DTW	bctsp030706-	4,3163	4.3167	4.3292	4.3292	:	-			0.0125
, , , , , , , , , , , , , , , , , , , ,	415	030706skv1020	030706skv1642	040506skv1021	040606skv1547				ļ	0.0467
H2DTX	bctsp030706-	4.2974	4,2976	4.3140	4.3143	1				0.0167
112017	416	030706skv1021	030706skv1642	040506skv1022	040606skv1547					0.0454
H3EV2	bctsp030706-	4.2689	4.2689	4,2840	4.2840	ļ				0.0151
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	417	030706skv1021	030706skv1643	042106skv0902	042106skv1507					2.0004
H3EV3	bctsp030706-	4.2818	4.2818	4.2880	4,2894	4.2899				0 0081
1100.00	418	030706skv1021	030706skv1643	042106skv0903	042106skv1508	042206skv0913	3			1
H3EV6	bctsp030706-	4.3166	4.3161	4.3226	4.3258	4.3256] :		0.0095
1102 00	419	030706skv1021	030706skv1643	042106skv0903	042106skv1509	042206skv0913				1
	bctsp030706-	4.3358	4.3358							NC
	420		030706skv1644							2 2 2 2 2
	5 g	5,0000	5.0000	4.9999	5.0001	4.9998				-0.0002
	wt	030706skv1023	030706skv1644	040506skv1022	040606skv1548	040706skv100	7			
	5 g	5,0000	5.0000	4.9997	5.0001					0.0001
	wt			042106skv0904	042106skv1509					
110517	bctsp030706-	4.3611	4.3614	4.3718	4.3723					0.0109
H3EV7	,			1	042106skv1509	э				
	421		4.3682	4.3815	4,3828	4.3827				0.0145
H3EV8	bctsp030706-	4,3079			5 042106skv151	042206skv091	4			
	422	U307068KV1023	0307003671040	0-2 1003KV000K	, , , , , , , , , , , , , , , , , , , ,					

GRAVIMETRIC BALANCE: QA-40

329 of 33

SOP# : Sac-IP-0006

Severn Trent Laboratories

WEST SACRAMENTO

AIR TOXICS GRAVIMETRIC ANALYSES

	00 010 11100									
Lab ID	Filter ID	Initial Weight (g)	Initial Weight (g) date/time initials	Final Weight (g) date/time initials	Final Weight (g) date/time initials	Final Weight (g) date/time initials	Final Weight (g) date/time initials	Final Weight (g) date/time initials	Final Weight (g) date/time initials	Wt of Particulate (g)
H3KFQ	bctsp030706-	4.2817	4.2812	4.3112	4.3117					0.0305
	423	030706skv1023	030706skv1645	042106skv0906	042106skv1510					
H3KFR	bctsp030706-	4.2787	4.2782	4.2995	4.2992					0.0210
	424	030706skv1024	030706skv1646	042106skv0906	042106skv1510					
H3KFT	bctsp030706-	4,2874	4.2874	4.3121	4.3121		•			0.0247
	425	030706skv1024	030706skv1646	042106skv0906	042106skv1511					
	5 g	5.0004	5.0005	4.9999	5.0003	5.0000				-0.0005
	wt	030706skv1024	030706skv1647	042106skv0907	042106skv1511	042206skv0914				

SOP#: Sac-IP-0006

Severn Trent Laboratories

WEST SACRAMENTO

AIR TOXICS GRAVIMETRIC ANALYSES

(4) TOXI	OS ONAVINIE!	NIO AIVALTOL								
Lab ID	Filter ID	Initial Weight (g)	Initial Weight (g) date/time initials	Final Weight (g) date/time_initials	Final Weight (g) date/time initials	Final Weight (g) date/time initials	Final Weight (g) date/time_initials	Final Weight (g) date/time_initials	Final Weight (g) date/time_initials	Wt of Particulate (g)
	5 g	5.0001	4.9999	4.9997	5.0001					0.0002
	wt	032806pgr0832	032906skv1027	042106skv0907	042106skv1502					
H3KFV	bctsp032706-	4.3545	4.3543	4.3894	4.3896					0.0353
, 10,	426	032806pgr0833	032906skv1028	042106skv0907	042106skv1503					0.0000
H3FW	bctsp032706-	4.3551	4,3551	4.3772	4.3771					0.0220
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	427	032806pgr0834	032906skv1029	042106skv0908	042106skv1503					0.0040
H3KFX	bctsp032706-	4.3499	4.3495	4.3739	4.3737		Ì	1		0.0242
	428	032806pgr0835	032906skv1029	042106skv0908	042106skv1504					0.0045
H3KF0	bctsp032706-	4.3586	4.3591	4.3572	4.3576			1	,	-0.0015
	429	032806pgr0836	032906skv1030	042106skv0909	042106skv1504					NC
	bctsp032706-	4.3433	4.3437							INC
	430	032806pgr0837	032906skv1030							NC
	bctsp032706-	4.3618	4.3619		1					1,100
	431	032806pgr0838	032906skv1031					ļ		NC
	bctsp032706-	4.3437	4.3441				İ			1
	432		032906skv1031							NC NC
	bctsp032706-	4.3435	4.3438	1	1					'``
	433	.,	032906skv1031					 	 	NC
	bctsp032706-	4.3494	4.3499							'''
	434	·	032906skv1032							NC
	bctsp032706-	4.3492	4.3496							
	435		032906skv1034		E 0004			 	-	0.0004
	5 g	4.9998	4.9997	4.9998	5.0001					
	wt	U32806pgr0844	U329008KV1034	0421065KVU909	042106skv1504	<u> </u>	L	<u> </u>	<u>.l</u>	

PDE115 Severn Trent Laboratories, Inc.
Inorganics Batch Review
QC Batch 6116572

Date 4/28/2006 Time 12:51:55

Method Code: AO Particulates in Air, Suspended "TSP HiVol" (APP B)
Analyst: Steve Valmores
Total PSPI.

Analyst:Ste	ve varmor	es			Total	PSRL		Rounded C	outrout.	
Work Order H3KFQ-1-AA	Result 0.0305	Units	LDL/Dil 0.0001	Prep Anal. 04/21/06			R/R R	Result 0.0305	LDL 0.0001	Dil. 1.00
H3KFR-1-AD	0.0210	g	0.0001	04/21/06	.00	N	R	0.0210	0.0001	1.00
H3KFT-1-AF	0.0247	a	0.0001	04/21/06	.00	И	R	0.0247	0.0001	1.00
H3KFV-1-A2	0.0353	g	0.0001	04/21/06	.00	N	R	0.035	0.00010	1.00
H3KFW-1-AF	0.0220	g	0.0001	04/21/06	.00	N	R	0.022	0.00010	1.00
H3KFX-1-AF	0.0242	g	0.0001	04/21/06	.00	N	R	0.024	0.00010	1.00
H3KF0-1-A2	ND	g	0.0001	04/21/06	.00	N	R	ND	0.00010	1.00

Notes:

PRODUCTION TOTALS

TOTAL # SAMPLE # QC # MATRIX # OTHER # MISC # HOURS

CASE NARRATIVE

STL SACRAMENTO PROJECT NUMBER G6D190170

AIR, TSP

The final weight for sample 000429 was less than the initial weight so this result was reported as 'ND'.

There were no other anomalies associated with this project.

STL Sacramento Certifications/Accreditations

Certifying State	Certificate #	Certifying State	Certificate #
Alaska	UST-055	Oregon*	CA 200005
Arizona	AZ0616	Pennsylvania	68-1272
Arkansas	04-067-0	South Carolina	87014002
California*	01119CA	Texas:	TX 270-2004A
Colorado	NA	Utah*	QUAN1
Connecticut	PH-0691	Virginia	00178
Florida*	E87570	Washington	C087
Georgia	960	West Virginia	9930C, 334
Hawaii	NA	Wisconsin	998204680
Louisiana*	01944	NFESC	NA
Michigan	9947	USACE	NA
Nevada	CA44	USDA Foreign Plant	37-82605
New Jersey*	CA005	USDA Foreign Soil	S-46613
New York*	11666		to annual or a second of the s

^{*}NELAP accredited. A more detailed parameter list is available upon request. Update 1/27/05

QC Parameter Definitions

QC Batch: The QC batch consists of a set of up to 20 field samples that behave similarly (i.e., same matrix) and are processed using the same procedures, reagents, and standards at the same time.

Method Blank: An analytical control consisting of all reagents, which may include internal standards and surrogates, and is carried through the entire analytical procedure. The method blank is used to define the level of laboratory background contamination.

Laboratory Control Sample and Laboratory Control Sample Duplicate (LCS/LCSD): An aliquot of blank matrix spiked with known amounts of representative target analytes. The LCS (and LCSD as required) is carried through the entire analytical process and is used to monitor the accuracy of the analytical process independent of potential matrix effects. If an LCSD is performed, it may also used to evaluate the precision of the process.

Duplicate Sample (DU): Different aliquots of the same sample are analyzed to evaluate the precision of an analysis.

Surrogates: Organic compounds not expected to be detected in field samples, which behave similarly to target analytes. These are added to every sample within a batch at a known concentration to determine the efficiency of the sample preparation and analytical process.

Matrix Spike and Matrix Spike Duplicate (MS/MSD): An MS is an aliquot of a matrix fortified with known quantities of specific compounds and subjected to an entire analytical procedure in order to indicate the appropriateness of the method for a particular matrix. The percent recovery for the respective compound(s) is then calculated. The MSD is a second aliquot of the same matrix as the matrix spike, also spiked, in order to determine the precision of the method.

Isotope Dilution: For isotope dilution methods, isotopically labeled analogs (internal standards) of the native target analytes are spiked into the sample at time of extraction. These internal standards are used for quantitation, and monitor and correct for matrix effects. Since matrix effects on method performance can be judged by the recovery of these analogs, there is little added benefit of performing MS/MSD for these methods. MS/MSD are only performed for client or QAPP requirements.

Control Limits: The reported control limits are either based on laboratory historical data, method requirements, or project data quality objectives. The control limits represent the estimated uncertainty of the test results.

Sample Summary G6D190170

H3KFF 1 P-0591 4/14/2006 09:05 AM 4/19/2006 09:15 AM H3KFG 2 P-0592 4/14/2006 09:25 AM 4/19/2006 09:15 AM H3KFH 3 P-0593 4/14/2006 09:35 AM 4/19/2006 09:15 AM H3KFJ 4 P-0594 4/14/2006 09:55 AM 4/19/2006 09:15 AM
H3KFH 3 P-0593 4/14/2006 09:35 AM 4/19/2006 09:15 AM
H3KFJ 4 P-0594 4/14/2006 09:55 AM 4/19/2006 09:15 AM
H3KFI. 5 P-0595 4/14/2006 10:20 AM 4/19/2006 09:15 AM
H3KFM 6 P-0596 4/14/2006 10:30 AM 4/19/2006 09:15 AM
H3KFP 7 P-0597 4/14/2006 09:10 AM 4/19/2006 09:15 AM
H3KFQ 8 000423 4/14/2006 09:15 ÅM 4/19/2006 09:15 AM
H3KFR 9 000424 4/14/2006 09:20 AM 4/19/2006 09:15 AM
H3KFT 10 000425 4/14/2006 09:40 AM 4/19/2006 09:15 AM
H3KFV 11 000426 4/14/2006 10:00 AM 4/19/2006 09:15 AM
H3KFW 12 000427 4/14/2006 10:15 AM 4/19/2006 09:15 AM
H3KFX 13 000428 4/14/2006 10:35 AM 4/19/2006 09:15 AM
H3KF0 14 000429 4/14/2006 10:05 AM 4/19/2006 09:15 AM

Notes(s):

- The analytical results of the samples listed above are presented on the following pages.
- All calculations are performed before rounding to avoid round-off errors in calculated results.
- Results noted as "ND" were not detected at or above the stated limit.
- This report must not be reproduced, except in full, without the written approval of the laboratory.
- Results for the following parameters are never reported on a dry weight basis: color, corrosivity, density, flashpoint, ignitability, layers, odor, paint filter test, pH, porosity, pressure, reactivity, redox potential, specific gravity, spot tests, solids, solubility, temperature, viscosity, and weight

COC	No.	

BROWN AND CALDWELL						C	CHAIN OF CUSTODY RECORD COC No							Vo		- · · · · · · · · · · · · · · · · · · ·		
G6D190170	· //	Carso	Goni Road on City, NV 18 / FAX 7	89706			I	Las Ve	gas, NV	ain Road / Suite 225 / 89102 702-938-4082	□ 201 East 1 Pl 602-567-4	uite YTCRA 0 4001	000147					
1	ROJECT NAME: Yerington	Air Qity		***************************************	,			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	······································	LABORATORY NAME & ADD	RESS: SEVE	RN TREN	T L	ABS	S., WEST SA	CRAM	ENTO,	
Pi	ROJECT NUMBER: 121243	}																
		T						7										
LINE NO.	SAMPLE - I.D.	DATE	ECTION TIME	SAMPLER'S INITIALS	NUMBER OF CONTAINERS	CONTAINER SIZE AND TYPE	PRESER- VATIVE	MATRIX		ANALYSE REQUEST			HELD FILTERED	ac - REG	-FA	SAMPLING	DEPTH (FT.) BEGIN END	ND READING (ppm)
01	-P-0591	4/4/	905	MS	1	8x10 Filter	NONE	A	PM-1 (234,2	0, Gross Alpha/Beta, Th(228,2 235,238), Metals(Client List)	230,232), Ra(226,2	28), U						
02	-P-0592		9:25		1	8x10 Filter	NONE	А	(234,2	0, Gross Alpha/Beta, Th(228,2 235,238), Metals(Client List)								
03	P-0593		9:35		1	8x10 Filter	NONE	A	PM-1 (234,	0, Gross Alpha/Beta, Th(228,2 235,238), Metals(Client List)	230,232), Ra(226,	228), U			·			
TL-Sacr	P-0594		9:55		1	8x10 Filter	NONE	A	PM-1 (234,	0, Gross Alpha/Beta, Th(228,2 235,238), Metals(Client List)	230,232), Ra(226,	228), U						
amento	T		10:20		1	8x10 Filter	NONE	A		0, Gross Alpha/Beta, Th(228,7 235,238), Metals(Client List)	230,232), Ra(226,	228), U						
(<u>9</u> 06	P-0596		10:30		1	8x10 Filter	NONE	A		0, Gross Alpha/Beta, Th(228,3 235,238), Metals(Client List)	230,232), Ra(226,	228), U						
73-500	P-0597	7-1	0910	\bigvee	1	8x10 Filter	NONE	A	PM-1 (234,	10, Gross Alpha/Beta, Th(228, 235,238), Metals(Client List)	230,232), Ra(226,	228), U						
08	3																	
09)										·							
10																		

COOLER I.D.: COMMENTS (see note on back): DATE TIME RELINQUISHED BY: DATE TIME RECORD RETURNED BY:

SISTRIBUTION: WHITE - PROJECT FILE . CANARY - LAB RECEIPT . PINK - DATA MANAGEMENT . GOLDENROD - FIELD USE A BALLPOINT PEN, BLACK INK, AND PRESS FIF

CHAIN OF CUSTODY RECORD

	COC No.		
100		 	

Event 74

BROWN AND CALDWELL 60 90 775-883-411 3264 Goni Road / Suite 153 Carson City, NV 89706 775-883-4118 / FAX 775-883-5108

☐ 4425 W. Spring Mountain Road / Suite 225 Las Vegas, NV 89102 702-938-4080 / FAX 702-938-4082

☐ 201 East Washington Street / Suite Y@R A000148 Phoenix, AZ 85004 602-567-4000 / FAX 602-567-4001

PROJECT NAME: Yerington Air Qity									LABORATOR	Y NAME & A	DDRESS:	SEVER	N TREN	T L	ABS	S., WEST SA	CRAM	ENTO,		
PROJECT NUMBER: 121243																				
																	, "			
LINE NO.	SAMPLE - I.D.	COLL	ECTION TIME	SAMPLER'S INITIALS	NUMBER OF CONTAINERS	CONTAINER SIZE AND TYPE	PRESER. VATIVE	MATRIX CODE			ANALY REQUE				FIELD FILTERED	QC - REQ	TAT	SAMPLING METHOD	DEPTH (FT.) BEGIN END	PID READING (ppm)
01	-000423	4/14/0	9:15	MS	1	8x10 Filter	NONE	A	TSP, 0 (234,2	Gross Alpha/B 35,238), Meta	eta, Th(228, ds(Client Lis	230,232), Re t)	(226,228),	ŭ						
02	-000424		9:20	þ [1	8x10 Filter	NONE	A	TSP, 0 (234,2	Gross Alpha/B 35,238), Mete	eta, Th(228,: ds(Client Lis	230,232), Ro t)	(226,228)	ប						
03	-000425		9:40		i	8x10 Filter	NONE	A		Gross Alpha/B 35,238), Meta			a(226,228)	, U						
P04	00426		10 CC		1	8x10 Filter	NONE	A	TSP, 6 (234,2	Gross Alpha/E 35,238), Met	seta, Th(228, als(Client Lis	230,232), R t)	a(226,228)	. U						
05	-000427		10:15		1	8x10 Filter	NONE	Α	TSP, ((234,2	Gross Alpha/Beta, Th(228,230,232), Ra(226,228), U 235,238), Metals(Client List)										
06	-000428		10:31	5	1	8x10 Filter	NONE	A	TSP, (234,7	Gross Alpha/Beta, Th(228,230,232), Ra(226,228), U 235,238), Metals(Client List)										
07 07	-001429	V	10:05		1	8x10 Filter	NONE	A	TSP, (234,2	Gross Alpha/Beta, Th(228,230,232), Ra(226,228), U 235,238), Metals(Client List)										
08		¥												gless Aller so Alexandra						
0 9																				
10	1	8																		
C	COVERTED & RELEASED BY: RECEIVED BY: DATE TIME RELINQUISHED BY:												COMMEN	ITS (s	see n	ote on back):				
Pi	RECEIVED BY: DATE TIME RELINQUISHED BY:								DATE	TIME :										
-	ckeng vare (176605.4)																			
									-				Λ.	/	=					
RECORD RETURNED BY: DATE TIME / / :						·														
COURIER: 1-1) -X SHIPPING NUMBER: 74039768 6478																				
SIST	RIBUTION: WHITE - PROJEC	T FILE •	CANARY - L	AB RECEI	PT • P	INK - DATA MANA	GEMENT	• GOLD	ENROD -					 						

SEVERN STL

LOT RECEIPT CHECKLIST STL Sacramento

CLIENT Brown & Calchell PM KD LOG# 3834/
LOT# (QUANTIMS ID) GOD190170 QUOTE# 62684 LOCATION AC
Initials Date
DATE RECEIVED 4/19/06 TIME RECEIVED 09/5 W 4/19/01
DELIVERED BY FEDEX CA OVERNIGHT CLIENT AIRBORNE GOLDENSTATE DHL UPS BAX GLOBAL GO-GETTERS STL COURIER COURIERS ON DEMAND OTHER CUSTODY SEAL STATUS INTACT BROKEN NA
CUSTODY SEAL #(S)
SHIPPPING CONTAINER(S) STL CLIENT N/A TEMPERTURE RECORD (IN °C) IR 1 3 OTHER HAT COC #(S)
TEMPERATURE BLANK Observed: Corrected:
Observed: Cmbunt Average: Corrected Average:
COLLECTOR'S NAME:
pH MEASURED YES ANOMALY N/A
LABELED BY
PEER REVIEW NA
SHORT HOLD TEST NOTIFICATION SAMPLE RECEIVING WETCHEM VOA-ENCORES N/A
☐ METALS NOTIFIED OF FILTER/PRESERVE VIA VERBAL & EMAIL ☐ N/A
COMPLETE SHIPMENT RECEIVED IN GOOD CONDITION WITH APPROPRIATE TEMPERATURES, CONTAINERS, PRESERVATIVES
☐ Clouseau ☐ TEMPERATURE EXCEEDED (2 °C – 6 °C) 1 ☐ N/A ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐
☐ WET ICE ☐ BLUE ICE ☐ GEL PACK ☐ NO COOLING AGENTS USED ☐ PM NOTIFIED
Notes:

SEVERN STL

Bottle Lot Inventory

Lot 10: GBD 190170

Number of VOAs with air bubbles present / total number of VOA's

QA-185 5/05 EM

7 of 331